Карбоксигемоглобин определение. Клиническое значение и современные методологические аспекты определения уровня карбокси- и метгемоглобина в крови

Гемоглобин (Hb)

— кровяной пигмент, роль которого заключается в транспорте кислорода к органам и тканям. Вне эритроцитов (в плазме крови) гемоглобин практически не обнаруживается.

Химически гемоглобин относится к группе хромопротеидов. Его простетическая группа, включающая железо, называется гемом, белковый компонент — глобином. Молекула гемоглобина содержит 4 гема и один глобин. Гем является металлопорфирином — комплексом железа с протопорфирином. Протопорфирин имеет в своей основе четыре пиррольных кольца, соединенных посредством метиловых мостиков (СН) в кольцо порфирина. Гем идентичен для всех разновидностей гемоглобина человека.

В эритроцитах циркулирующей крови гемоглобин находится в состоянии беспрерывной обратимой реакции, то присоединяя молекулу кислорода (в легочных капиллярах), то отдавая ее (в тканевых капиллярах).

При полном насыщении крови кислородом 1 г гемоглобина связывает 1,34—1,36 мл кислорода. При высоком содержании кислорода в окружающей среде (в легких) восстановленный гемоглобин легко и быстро переходит в оксигемоглобин, тогда как при малых концентрациях кислорода в окружающей среде (в тканях, в которых кислород утилизируется) оксигемоглобин легко отщепляет от себя кислород. В случае ухудшения условий артериализации крови вследствие нарушения диффузии кислорода через альвеолярную мембрану или увеличения скорости кровотока в малом круге кровообращения, а также при повышенном потреблении кислорода тканями содержание оксигемоглобина в крови снижается, а количество восстановленного гемоглобина соответственно возрастает. В норме в артериальной крови содержание оксигемоглобина составляет 95—96 % от общего количества гемоглобина. В венозной крови эта величина снижается до 60 %.

Карбоксигемоглобин (HbCO)

— оксиуглеродный гемоглобин — диссоциирует в несколько сотен раз медленнее, чем оксигемоглобин, поэтому даже незначительная концентрация (0,07 %) в воздухе угарного газа (СО), связывая около 50 % имеющегося в организме гемоглобина и лишая его способности переносить кислород, является смертельной.

Образование карбоксигемоглобина начинается с периферии эритроцитов, соприкасающихся в легочных капиллярах с СО. При последующей циркуляции крови перераспределения СО между эритроцитами не происходит. По мере увеличения концентрации СО в воздухе образование карбоксигемоглобина распространяется от периферии эритроцитов к их центру. Каждый грамм глобина способен связывать 1,33—1,34 мл О2 или СО. Эта величина получила название константы Хьюфнера. Однако сродство к СО в 200—290 раз больше, чем к О2-

Константа равновесия этой реакции следующая:

В связи с этим даже при малом содержании СО во вдыхаемом воздухе в организме создаются конкурентные взаимоотношения между этими газами по захвату гемоглобина со значительным преимуществом для СО.

Определение содержания карбоксигемоглобина

(по Л.Э. Горн). Метод основан на фотометрическом определении разницы светопоглощения растворов окси- и карбоксигемоглобина после их денатурации щелочью.

Оборудование и реактивы. Универсальный фотометр ФМ или горизонтальный фотометр; 0,04 % раствор аммиака; 0,2 н. раствор гидратов оксида натрия или калия (едкого кали или натра).

Методика . В 2 пробирки наливают по 4,9 и 5,9 мл 0,04 % раствора аммиака, после чего в каждую вносят по 0,1 мл крови. В первую пробирку, предназначенную для определения светопоглощения исходной денатурированной крови, содержащей искомое количество карбоксигемоглобина (HbO2 + HbCO), быстро добавляют 5 мл 0,2 н. раствора щелочи, быстро перемешивают двукратным опрокидыванием и фотометрируют пробу через 1 мин после внесения щелочи (50—70 с, не более!) при светофильтре № 5 (М-55 или М-52, эффективная длина волны пропускаемого света 550 или 520 нм). Содержимое второй пробирки, в которой определяют общее количество гемоглобина, прямо фотометрируют при светофильтре № 5 (М-50, 496 нм). Фотометрирование ведут по общепринятым правилам в кюветах 10 мм с использованием дистиллированной воды. При использовании светофильтра № 5 (М-55) содержание карбоксигемоглобина вычисляют по формуле:

где Е — экстинкция.

Если светофильтр № 5 имеет марку М-52, а не М-55, то коэффициент 132 заменяют на 123.

Норма и оценка результатов исследования карбоксигемоглобина

В крови лиц, не соприкасающихся в условиях производства с оксидом углерода, карбоксигемоглобин присутствует, как правило, в некотором количестве, что обусловлено практически постоянным загрязнением атмосферы продуктами неполного сгорания всех видов топлива. По данным разных авторов, у городских жителей, не связанных с воздействием оксида углерода, в крови содержится до 15 % карбоксигемоглобина. Средняя его концентрация колеблется, по различным данным, от 2—4 до 6—8 %. Курение ведет к повышению этой величины на 2—3 %. Источником образования карбоксигемоглобина является не только экзогенный оксид углерода, но и в какой-то мере оксид углерода, образующийся в организме в результате неполного окисления некоторых продуктов обмена веществ, в частности гемоглобина. Поскольку при перенесении пострадавшего в чистую атмосферу, особенно при вдыхании кислорода, диссоциация карбоксигемоглобина происходит сравнительно быстро (за первый час содержание карбоксигемоглобина уменьшается вдвое), результаты лабораторного исследования крови, взятой для анализа через некоторое время после оказания первой помощи, могут дать ложное представление об имевшей место начальной максимальной концентрации карбоксигемоглобина и тем самым исказить представление о степени тяжести клинической картины интоксикации. Это является обоснованием необходимости максимального сокращения интервалов между вынесением пострадавшего из отравленной атмосферы и взятием крови для анализа. При хронической интоксикации оксидом углерода диссоциация карбоксигемоглобина в крови значительно замедляется.

СО не требует специальных методов изолирования, работают с мышечной тканью в случае пожара (нет крови) или с кровью.

Образуется при неполном сгорании древесины, м.б. обнаружен в выхлопных газах машин (13%), в табачном дыму (1%).

CO является кровяным ядом, проникает через дыхательные пути и связывается с Hb крови, образуя довольно прочные соединения. Сродство СО к Hb в 300 раз выше, чем у кислорода. В крови лиц, отравленных СО содержится дезоксигемоглобин, оксигемоглобин, карбоксигемоглобин, а также может содержаться некоторое количество метгемоглобина, который при отравлениях СО не связывается с оксидом углерода. В тканях мышц лиц с подозрением на отравление СО содержится дезоксимиоHb (МHb), оксимиоHb (ОМHb), карбоксимиоHb (COMHb),

3 стадии отравления:

Смертельная концентрация СО в крови >60%.

Идентификация:

1. Химические методы.

Берется ярко-красная кровь или мышечная ткань.

2. Спектральные методы.

а) При помощи спектроскопа (прибор для визуальной спектроскопической диагностики). Исследуемую кровь разводят водой до светло-розовой окраски и смотрят ее спектр. При этом спектр крови, содержащей дезоксиHb имеет одну широкую полосу при 550 нм. Спектр оксигемоглабина содержит две полосы при 557-589 нм и при 536-556 нм.

Карбоксигемоглобин содержит 2 полосы при 564-579 нм и при 523-536 нм. Берут исследуемую кровь и смотрят в спектроскоп. Наблюдается 3 полосы поглощения (COHb, OHb, Hb). Далее к крови добавляют дитионит натрия. OHb восстанавливается до Hb, а COHb не восстанавливается. Если остается 3 полосы поглощения, то было отравления, а если остается только одна, то не было. Метод удобен, если содержание COHb в крови составляет 10-30%.

б) Основной метод – СФМ.

Берут исследуемую кровь и смотрят – 2 пика. Добавляют дитионит Na. Если сохраняются 2 пика, то отравление было (COHb не восстанавливается), а если они сливаются в один, то отравления угарным газом не было (OHb восстанавливается).

Количественное определение:

1. Берется донорская кровь без CO, разводится раствором NH4OH, отфильтровывается и добавляется восстановитель Na2S2O4. Наблюдаем спектр гемоглобина (максимум при 550 нм). Через кровь с подозрением на CO пропускаем CO (для того, чтобы его получить, к формальдегиду прибавляем H2SO4) чтобы полностью перевести OHb, Hb, MetHb в COHb и затем смотрим спектр (2 максимума, характерные для COHb). Оба спектра накладываем друг на друга и получаем три изобестические точки в местах пересечения при 550, 560 и 580 нм.



В этих точках пересечения оптические плотности COHb и Hb будут одинаковыми. На основании экспериментальных данных, наибольшая разница оптической плотности COHb и Hb наблюдается при 538 нм. Рассчитываем содержание COHb по формуле:

В исследуемую кровь, взятую на анализ, добавляют дитионит натрия и снимают спектр при 538 и 560 нм. Коэффициенты 0,76 и 0,38 для каждого прибора индивидуальны.

2. Газохроматографическое определение. В пенициллиновый флакон помещают 2,5 мл крови + 0,5 мл к.H2SO4 и 1,0 феррацианида калия. Закрывают резиновой пробкой, фиксируют (под обкатку), встряхивают 30 секунд, отбирают газовую фазу и вводят в хроматограф. На хроматограмме 2 пика – воздуха и CO. Определяют по времени удерживания.

1

Значительный вклад в ухудшение кислородтранспортной функции организма при табакокурении вносит поступление в организм моонооксида углерода (СО), обладающего значительно более высоким по сравнению с кислородом сродством к гемоглобину (Нb). СО, частично блокируя процессы транспортировки кислорода вследствие образования карбоксиНb (СОНb), не способного переносить кислород, существенно снижает его доставку тканям. В этой связи представляет интерес изучение связей содержания СОНb с параметрами, отражающими состояние кислородного гомеостаза, - кислородной сатурацей крови (satO2) и показателем степени сродства Нb к O2 р50 (полунасыщение оксигемоглобина O2). В настоящей работе представлены результаты изучения этих связей методом регрессионного анализа у некурящих и курящих людей. Выяснилось, что характер зависимости satO2 от содержания COHb у курящих юношей отличается от линии регрессии у некурящих - отсутствием восходящей части на кривой и отчетливо выраженным снижением кислородной сатурации при повышении концентрации СОНb. В то же время у курильщиков рост значений COHb сопровождается увеличением величины р50, т.е. по мере возрастания концентрации COHb увеличивается дезоксигенация Hb, а, следовательно, и диффузия кислорода в ткани. Этот факт можно рассматривать как один из механизмов адаптации организма курильщиков к кислородному дисбалансу. Важно отметить, что у некурящих людей, как выявленные негативные процессы, так и адаптивные реакции проявляются при относительно низких концентрациях COHb, что подтверждает известные факты вреда пассивного курения.

активное и пассивное курение

карбоксигемоглобин

кислородная сатурация

гипоксия

1.Агаджанова С.Н. Еще раз о вреде курения / С.Н. Агаджанова // Дошкольная педагогика. – 2012. – С. 14 -16.

2. Габриелян К.Г. Уровень адаптационных возможностей организма студентов и курение / К.Г. Габриелян, Б.В. Ермолаев // Физиология человека. – 2006. – Т. 32. - №2. – С. 110-113.

3.Герман А.К. Состояние мозгового кровотока у курильщиков / А.К. Герман // Врачебн. дело – 1995. - №2 – С. 123-125.

4.Загоскин П.П. Новые данные о физиологической роли монооксида углерода / П.П. Загоскин // Нижненовгородский Медицинский Журнал. – 2008. - №3. – С. 103-112.

5.Луценко М.М. Газотранспортный обмен в периферической крови при общем охлаждении организма/М.М. Луценко //Бюллетень физиологии и патологии дыхания. – 2012. - №44. – С. 85-89.

6. Моран Р. Лабораторная оценка снабжения тканей кислородом: газы крови и СО-оксиметрия (лекция) [Текст] / Р. Моран // Клиническая лабораторная диагностика. – 1998. - № 2. – С. 25-32.

7. Шамратова В.Г. Биохимические и физиологические механизмы влияния курения на кислородный статус организма юношей с различным уровнем физической активности / В.Г. Шамратова, С.Р. Усманова // Вестник Башкирского университета. – 2013. - № 4. – С. 1050 – 1052.

Введение

Табакокурение является одним из наиболее распространенных источников поступления монооксида углерода (СО) в организм человека. При повышенных концентрациях экзогенный СО связывается с гем-содержащими белками: гемоглобином (Hb), миоглобином, цитохромами, что вызывает кислородное голодание тканей за счет нарушения как транспорта кислорода, так и тканевого дыхания. Ухудшение кислородтранспортной функции (КТФ) крови у курильщиков обусловлено повышением уровня карбоксигемоглобина (COHb), который может составлять 3—5% от общего содержания Hb, достигая 10% у злостных курильщиков, выкуривающих более 2—3 пачек сигарет в день . При этом количество ежедневно выкуриваемых сигарет непосредственно влияет на содержание не только COHb, но и оксигенированной формы гемоглобина и кислородную сатурацию в целом . Развивающаяся гипоксемия, а также неспособность тканевых клеток использовать кислород вследствие ухудшения диффузии его к митохондриям приводит к снижению интенсивности тканевого обмена.

Наряду с активным курением вызывает тревогу пассивное курение, поскольку экспозиция вторичным табачным дымом также опасна, как и дымом главного потока, который вдыхает активный курильщик. Известно, что 50% основного потока табачного дыма уходит в окружающий воздух, а в окружающего курильщика атмосферу попадает токсических компонентов больше, чем в организм самого курильщика . Это обстоятельство обусловливает необходимость объективной оценки влияния компонентов табачного дыма и, прежде всего, монооксида углерода, не только на активных, но и пассивных курильщиков. Одним из способов такого анализа является изучение регрессионных кривых зависимости параметров кислородного транспорта крови от содержания СОНb в широком диапазоне его варьирования. Такой подход позволит обнаружить закономерности влияния СОНb на состояние КТФ крови и выявить зоны, в которых у курящих и некурящих людей наблюдаются изменения характера зависимости, свидетельствующие либо о развитии адаптационных реакций, либо, наоборот, о проявлении негативного действия СО.

К числу показателей, отражающих состояние кислородного гомеостаза, можно отнести кислородную сатурацию крови (satO2). Представляя собой отношение фракции оксигенированного Нb к количеству Нb в крови, который способен транспортировать кислород, satO2 является индикатором адекватного поступления O2 в кровь из альвеол легких. Другим важнейшим параметром КТФ крови является р50 (полунасыщение оксигемоглобина O2) - показатель степени сродства Нb к O2. Его возрастание свидетельствует об улучшении диссоциации оксигемоглобина, большем освобождении кислорода и его диффузии в ткани.

Целью настоящего исследования явилось изучение характера связи содержания СОНb в крови с satO2 и р50 у курящих и некурящих людей методом регрессионного анализа.

Материалы и методы исследования

В исследовании приняли участие студенты (юноши) Башкирского государственного университета 18-23-летнего возраста, клинически здоровые по результатам ежегодного диспансерного осмотра. Выборку обследованных мы разделили на 2 группы согласно факту курения по анкетным данным: группа 1 - некурящие (n=49); группа 2 - курящие юноши (n=101). Кровь для анализа забиралась утром натощак, по нашим предварительным рекомендациям испытуемым разрешалось выкурить не более одной сигареты и не менее чем за час до сдачи анализа. Анализ крови проводился на автоматическом анализаторе «RAPIDLAB865» фирмы «BAYER» (Германия). Обработку данных проводили методом регрессионного анализа в программе Microsoft Office Excel 2007.

Результаты исследования и их обсуждение

На рис. 1 представлена регрессионная кривая зависимости кислородной сатурации от концентрации СОНb у некурящих юношей. Видно, что возрастание концентрации СОНb сопровождается повышением satO2, что обусловлено сдвигом кривой диссоциации оксигемоглобина влево вследствие более высокого сродства этой фракции к O2. Наличие в крови карбоксигемоглобина в норме, доля которого у некурящих людей составляет 0,5—1,0% от общего содержания Hb, обусловлено его образованием за счет эндогенного моноксида углерода . Возрастание содержания COHb более 1,3%, как вытекает из линии регрессии, приводит к некоторому снижению сатурации крови.

Рис. 1. Зависимость кислородной сатурации крови от концентрации COHb для некурящих юношей, по оси абсцисс концентрация COHb в %, по оси ординат сатурация в %

Аналогичный характер зависимости прослеживается и при изучении зависимости рО2 от концентрации COHb. Рост рО2 наблюдается в интервале варьирования COHb до 1,3%, затем отмечается тенденция к снижению показателя (рис. 2).

Рис. 2. Зависимость парциального давления кислорода от концентрации СОНb для некурящих юношей, по оси абсцисс концентрация СОНb в %, по оси ординат парциальное давление в мм. рт. ст.

У курящих юношей в области кривой, приходящейся на интервал варьирования СОНb от 1 до 2 % (рис.3), связи между этими параметрами отсутствуют, при дальнейшем повышении концентрации происходит слабо выраженное, а при содержании СОНb свыше 4,5% - резкое снижение кислородной сатурации. Принципиально сходный характер кривой наблюдается для зависимости СОНb - рО2. Таким образом, табакокурение, сопровождающееся накоплением в крови достаточно высоких концентраций СОНb, существенно снижает кислородное насыщение крови. В то же время у курильщиков накопление в крови СОНb от 2% до 4 % практически не сказывается ни на сатурации, ни на рО2, что, очевидно, свидетельствует о развитии адаптационных процессов во всей кислородтранспортной системе организма. Так, существует точка зрения о том, что у молодых курильщиков с небольшим стажем благодаря широким компенсаторным возможностям организма в обычных условиях и, как правило, отсутствию достаточного кумулятивного эффекта длительное время могут не проявляться клинически изменения со стороны систем дыхания и кровообращения . Сатурация и парциальное давление O2, является, как известно, показателем состояния диффузии кислорода в легких, отражая функцию легких и сердца, которые обеспечивают диффузию кислорода воздуха в кровь - из альвеол легких в легочные капилляры .

Рис. 3. Зависимость кислородной сатурации крови от концентрации СОНb для курящих юношей, по оси абсцисс концентрация СОНb в %, по оси ординат сатурация в %

Вполне возможно, что определенный вклад вносят также адаптационные реакции, затрагивающие непосредственно механизм поступления кислорода в ткани. В этой связи большой интерес представляет изучение величины р50 - показателя степени сродства Hb к кислороду. Его снижение свидетельствует об усилении оксигенации, а повышение - дезоксигенации., т.е. увеличении отдачи кислорода тканям. Чтобы объяснить механизмы адаптации кислородтранспортной системы к содержанию СОНb в крови юношей, мы рассмотрели связь между СОHb и показателем р50. На рис. 3 и 4 представлены графики регрессионной зависимости р50 от СOHb для некурящих и курящих испытуемых.

Рис. 4. Зависимость р50 от концентрации СОНb для некурящих юношей, по оси абсцисс концентрация СОНb в %, по оси ординат сатурация в %

У некурящих низкому уровню COHb соответствует высокие значения р50 как при прямой, так и при обратной зависимости (рис. 4), что обусловлено более высоким сродством гемоглобина к СО, чем к кислороду. У курящих юношей рост значений COHb сопровождается увеличением величины р50 (рис. 5).

Иначе говоря, по мере возрастания концентрации COHb увеличивается дезоксигенация Hb. Причем обратная зависимость этих показателей демонстрирует связь с большим коэффициентом детерминации. Таким образом, можно допустить, что у курящих юношей повышение концентрации COHb в крови противодействуют развитию гипоксии тканей благодаря улучшению диссоциации оксигемоглобина, освобождению большего количества кислорода и его доступности тканям.

Рис. 5. Зависимость р50 от концентрации СОНb для курящих юношей по оси абсцисс концентрация СОНb в %, по оси р50 в мм. рт.ст.

Одним из механизмов такой адаптации может быть увеличение содержания 2,3-ДФГ - продукта побочного пути расщепления глюкозы метаболизма эритроцитов, в присутствии которого гемоглобин легче отщепляет кислород и тем самым обеспечивает ткани нужным количеством кислорода, предупреждая гипоксию . Так, показано, что у курильщиков со стажем более 5 лет концентрация 2,3 ДФГ повышается, что способствует снижению сродства Hb к кислороду и его освобождением для улучшения аэрации тканей .

Улучшение отдачи кислорода тканям может достигаться и за счет эффекта Бора: у курильщиков со стажем наблюдается уменьшение показателя рН, что сопровождается снижением сродства гемоглобина к кислороду.

Заключение

Негативная роль курения сказывается на состоянии кислородного гомеостаза путем накопления в крови COHb, не способного транспортировать кислород тканям. При концентрации COHb, превышающей 4%, существенно снижается кислородная сатурация крови. В то же время в организме курящих развивается ряд компенсаторных механизмов, препятствующих развитию гипоксии, вызванной табакокурением, в частности, повышается величина р50, свидетельствуя об усилении отдачи кислорода тканям при том же уровне рО2. У некурящих рО2 и кислородное насыщение крови имеет тенденцию к снижению при значительно более низких концентрациях COHb, чем у курящих, что говорит о слабой адаптации организма к СО и отсутствии резервных механизмов. В этой связи организм людей, не потребляющих табак, но находящихся в среде с загрязнением воздуха табачным дымом (вдыхающие загрязненный табачным дымом воздух «пассивное курение»), оказываются более подверженными негативному действию табачного дыма, чем сами курящие. Таким образом, неблагоприятным прогнозом для здоровья является не только активное, но и пассивное курение.

Рецензенты :

Ибрагимов Р.И., д.б.н., профессор кафедры биохимии и биотехнологии ФГБОУ ВПО «Башкирский государственный университет», г. Уфа.

Новоселова Е.И., д.б.н., профессор, заведующая кафедрой экологии ФГБОУ ВПО «Башкирский государственный университет», г. Уфа.

Библиографическая ссылка

Исаева Е.Е., Усманова С.Р., Шамратова В.Г. ОСОБЕННОСТИ ВЛИЯНИЯ КАРБОКСИГЕМОГЛОБИНА НА ПОКАЗАТЕЛИ КИСЛОРОДНОГО РЕЖИМА КРОВИ У НЕКУРЯЩИХ И КУРЯЩИХ ЮНОШЕЙ // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13129 (дата обращения: 20.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Аномальная форма гемоглобина, при которой атомы двухвалентного железа окисляются до трёхвалентного под воздействием токсичных веществ, кислородсодержащих лекарственных препаратов либо по причине наследственных нарушений молекул гемоглобина называется метгемоглобином.

Перевоплощение природного гемоглобина в метагемоглобин происходит путем его окисления, в результате чего формула железа Fe2+ переходит в трехвалентное состояние – Fe3+.

Молекула метгемоглобина

Главная отличительная особенность метгемоглобина в том, что он не способен соединяться с молекулами кислорода и переносить его к человеческим органам и тканям, вследствие чего наступает кислородное голодание организма.

В крови здорового человека метгемоглобин присутствует в незначительных количествах. Норма метгемоглобина в крови составляет примерно 1% (с погрешностью до 3%). Если его присутствие превышает указанную норму, наступает заболевание – метгемоглобинемия.


Формирование аномальной формы

Метгемоглобин: норма в крови, понятие и разновидности

Метгемоглобинемией называют заболевание, при котором в эритроцитах значительная часть гемоглобина содержит окисленное трехвалентное железо. Гемоглобин, как важнейший элемент, отвечает за транспортировку кислорода по организму. Окисляясь до метгемоглобина, он теряет это свойства, что приводит к гипоксии органов и тканей.

Различают три формы метгемоглобинемии:

  • Врождённая. Крайне редкая форма заболевания. Не влияет на продолжительность и качество жизни.
  • Генетическая. При этой форме заболевания причиной увеличения доли метгемоглобина становится генетическая предрасположенность. В этом случае происходит врождённая метаболическая ошибка, которая приводит организм в состояние метгемоглобинемии. Последствиями этой формы болезни очень серьезные: умственная отсталость, микроцефалия. Продолжительность жизни короткая, как правило, люди умирают в молодом возрасте.

Генетическая форма
  • Приобретенная. Данная форма более распространена. Возникает по причине воздействия на организм веществ, вызывающих метгемоглобинемию. Происходит в результате приема ряда лекарств или под воздействием токсичных веществ.

Диагностика и лечение метгемоглобинемии у взрослых и детей

Симптоматические признаки и последствия метгемоглобинемии зависят от формы и уровня метгемоглобина:

  • Уровень 3-15% – появляется характерный бледный, серый либо синюшный оттенок кожи, утолщение ногтевых пластин.
  • Уровень 15-20 % – появляется цианоз.
  • Уровень 25-50% – отмечаются физиологические последствия: мигрень, общая слабость, одышка, боль в груди, спутанность сознания.
  • Уровень 50-70% – обмороки, психические расстройства, судороги, коматозное состояние.
  • Уровень более 70% – летальный исход.

Заболеванию метгемоглобинемии подвержены и взрослые, и дети, в том числе новорожденные.


Уровни опасности

Характерный признак для всех форм метгемоглобинемии – шоколадно-коричневый оттенок крови, при заборе анализов она не меняет свой цвет.

Для диагностики заболевания у взрослого пациента врач оценивает симптомы, назначает лабораторные исследования. При постановке диагноза очень важно выявить причину гипоксии. Если это состояние вызвано отравлением, необходимо исключить возможность попадания в кровь угарного газа. При попадании этого вещества в кровь образуется прочное соединение – карбоксигемоглобин. Как и метгемоглобин, он не способен транспортировать кислород к клеткам и тканям. Отличительным признаком отравления карбоксигемоглобином становится ярко-красный цвет крови.

Чрезмерное количество метгемоглобина в крови может наблюдаться и у женщин, и у мужчин. Однако мужчины подвержены этому заболеванию на 66.59% меньше, чем женщина. Случаи летального исхода при заболевании мужчин метгемоглобинемией не зафиксированы.

Для диагностирования метгемоглобинемии у новорожденных детей врачом проводятся специальные анализы и исследования, позволяющие измерить уровень содержания метгемоглобина в крови.

В частности, к таким исследованиям относится:

  • Цвет крови. При заболевания она приобретает насыщенный коричневый цвет.
  • Биохимия крови. Повышенный билирубин при биохимическом анализе может свидетельствовать о метгемоглобинемии.
  • Анализ на концентрацию метгемоглобина в крови ребенка.
  • Общий анализ крови. Если ребенок болен, уровень СОЭ понижается, а гемоглобин и эритроциты повышаются.

У детей с наследственным заболеванием нередко наблюдаются следующие внешние признаки болезни:

  • Ярко выраженный цианоз на коже и слизистых оболочках.
  • Деформация формы черепа.
  • Отставание в психомоторном развитии.

Метгемоглобинемии подвержены дети и мужского, и женского пола. Однако новорожденные девочки рискуют приобрести заболевание наследственным или врождённым путем гораздо чаще, чем мальчики.

Токсические вещества, синтезирующие метгемоглобин

Главная причина концентрации в крови метгемоглобина – попадание в организм патогенных химических веществ в результате передозировки лекарственных препаратов на основе анилина и его производных. Вещество, которое способно преобразовать гемоглобин в метгемоглобин, называется метгемоглобинообразователем.

Основные метгемоглобинообразователи:

  • местные анестетики;
  • нитраты и нитриты;
  • оксид азота;
  • примахин;
  • нафталин;
  • производные гидразина;
  • сульфаниламиды.

Стоит с особой осторожностью относиться к лекарственным препаратам, произведенным на основе метгемоглобинообразователей. Перед употреблением лекарственного препарата необходимо ознакомиться с инструкцией применения и дозировкой.


Цианоз – один из признаков патологии

Способы предотвращения окисления железа гемоглобина

Для поддержания здоровья стоит знать, как предотвратить образование излишнего метгемоглобина в крови. Для этой цели есть два способа.

  1. Предотвратить патогенное воздействие, проникших в эритроциты крови окислителей железа до того, как они повредят молекулы гемоглобина. Для этого в кровь вводится энзим глутатионпероксидаза. При этом восстановленный глутатион воздействует на патогенные окислители в крови, обезвреживает их и предотвращает синтез метгемоглобина. Данный способ поможет предотвратить дальнейшее развитие метгемоглобинемии, однако может привести к образованию в крови веществ, полученных в результате денатурации гемоглобина – телец Гейнтца.
  2. Восстановить повреждённые окисленным железом молекулы гемоглобина. Данный способ применяется при помощи двух ферментативных систем: НАНД-зависимой и НАНДФ-зависимой метгемоглобинредуктазы. В первой системе восстанавливающими повреждённый гемоглобин веществами выступают продукты анаэробного этапа переработки глюкозы (НАНД), во второй – гексозомонофосфатного преобразования (НАНДФ). В результате гексозомонофосфатного превращения при воздействии гексозо-6-фосфатдегидрогеназы (Г-6ф-ДГ) синтезируется восстанавливающий агент – никатинамид – адениндинуклеотд фосфат (НАНДФН). Он принимает участие в трансформации метгемоглобина в гемоглобин в присутствии НАДФН-метгемоглобинредуктазы, а также в результате восстановления окисленного трехвалентного железа при участии НАНДФ-зависимой глутатионредуктазы.

Метгемоглобин – опасное для здоровья вещество. Синтезирование гемоглобина в метгемоглобин приводит к серьезным нарушениям состава и качества крови. Во избежание концентрации его в организме необходимо систематически проводить профилактические процедуры и следить за дозировкой применяемых лекарств.

О влиянии нитратов на организм человека рассказывается в представленном видеосюжете:

Еще:

Как повышают уровень гемоглобина быстро: народные средства, методы диагностики