Понятие о тканях. Виды тканей

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Организм человека состоит из тканей - исторически сложившаяся система клеток и неклеточных структур, обладающих общностью строения и специализированных на выполнении определенных функций.

Виды:

1. эпителиальная

2. кровь и лимфа

3. соединительная

4. мышечная

5. нервная

В состав каждого органа входит несколько видов тканей. В течение жизни организма происходит изнашивание и отмирание клеточных и неклеточных элементов (физиологическая дегенерация) и их восстановление (физиологическая регенерация).

В течение жизни в тканях происходят медленно текущие возрастные изменения. Ткани восстанавливаются при повреждении неодинаково. Эпителий восстанавливается быстро, поперечно-полосатая только при определенных условиях, в нервной ткани восстанавливаются только нервные волокна. Восстановление тканей при их повреждении - репаративная регенерация.

Характеристика эпителиальной ткани.

По происхождению эпителий образуется из 3 зародышевых листков:

1.из эктодермы - многослойный - кожный

2.из энтодермы - однослойный - кишечный

3.из мезодермы - эпителий почечных канальцев, серозных оболочек, половых почек

Эпителий покрывает поверхность тела, выстилает слизистые оболочки внутренних полых органов, серозные оболочки, образует железы. Делится на покровный (кожный) и железистый (секреторный).

Покровный - пограничная ткань, выполняет функции защиты, обмена веществ (газообмен, всасывание и выделение), создает условия для подвижности органов (сердце, легкие). Секреторный образует и выделяет вещества (секреты) во внешнюю среду или в кровь и лимфу (гормоны). Секреция - способность клеток образовывать и выделять вещества, необходимые для жизнедеятельности клеток. Эпителий всегда занимает пограничное положение между внешней и внутренней средой. Это пласты клеток - эпителиоцитов - неодинаковых по форме. Эпителиоциты располагаются на базальной мембране, которая состоит из аморфного вещества и фибриллярных структур. Являются полярными, т.е. по-разному располагаются их базальные и верхушечные отделы. Они способны к быстрой регенерации. Между клетками нет межклеточного вещества. Клетки соединяются с помощью контактов - десмосом. Кровеносные сосуды отсутствуют. Тип питания ткани диффузный через базальную мембрану из подлежащих слоев. Ткань прочная из-за наличия тонофибрилл.

В основе классификации эпителия лежит отношение клеток к базальной мембране и форма эпителиоцитов.

ЭПИТЕЛИЙ

ПОКРОВНЫЙ ЖЕЛЕЗИСТЫЙ

Однослойный

Кубический

Призматический

Многорядный

Многослойный

Плоский неороговевающий

Плоский ороговевающий

Переходный

Эндокринные железы

Одноклеточные

(бокаловидные клетки)

Экзокринные железы

Многоклеточные

Однослойный плоский представлен эндотелием и мезотелием. Эндотелий выстилает интиму кровеносных и лимфатических сосудов, камеры сердца. Мезотелий - серозные оболочки полости брюшины, плевры и перикарда. Однослойный кубический - слизистые оболочки почечных канальцев, протоков желез, бронхов. Однослойный призматический - слизистую желудка, тонкого и толстого кишечника, матки, маточных труб, желчного пузыря, протоков печени, поджелудочной железы, канальцев почек. Многорядный мерцательный - слизистую воздухоносных путей. Многослойный плоский неороговевающий - роговицу глаза, слизистую оболочку полости рта и пищевода. Многослойный плоский ороговевающий выстилает кожу (эпидермис). Переходный - мочеотводящие пути.

Экзокринные железы выделяют свой секрет в полости внутренних органов или на поверхность тела. Обязательно имеют выводные протоки. Эндокринные железы выделяют секрет (гормоны) в кровь или лимфу. Они не имеют протоков. Одноклеточные экзокринные выделяют слизь, располагаются в дыхательных путях, в слизистой оболочке кишечника (бокаловидные клетки). Простые железы имеют неветвящийся выводной проток, сложные - ветвящийся. Различают 3 типа секреции :

1. мерокриновый тип (железистые клетки сохраняют свои структуры - слюнные железы)

2. апокриновый тип (верхушечное разрушение клеток - молочные железы)

3. голокриновый тип (полное разрушение клеток, клетки становятся секретом - сальные железы)

Виды экзокринных желез:

1. белковые (серозные)

2. слизистые

3. сальные

4. смешанные

Эндокринные железы состоят только из железистых клеток, не имеют протоков и выделяют во внутреннюю среду орган6изма гормоны (гипофиз, эпифиз, нейросекреторные ядра гипоталамуса, щитовидная, околощитовидные железы, тимус, надпочечники)

Соединительная ткань, ее виды.

Она очень разнообразна по своему строению, но имеет общий морфологический признак - в ней мало клеток, но много межклеточного вещества, включающего в себя основное аморфное вещество и специальные волокна. Это ткань внутренней среды организма, имеет мезодермальное происхождение. Она участвует в построении внутренних органов. Ее клетки отделены прослойками межклеточного вещества. Чем оно плотнее, тем лучше выражена механическая, опорная функция (костная ткань). Трофическая функция лучше обеспечивается полужидким межклеточным веществом (рыхлая соединительная ткань, окружающая кровеносные сосуды).

Функции соединительной ткани:

1. Механическая, опорная, формообразующая (кости, хрящи, связки)

2. Защитная

3. Трофическая (регуляция питания, обмена веществ и подержание гомеостаза)

4. Пластическая (участие в приспособительных реакциях к изменяющимся условиям среды - заживление ран)

5. Может участвовать в кроветворении при патологии

СОЕДИНИТЕЛЬНАЯ

СОБСТВЕННО СОЕДИНИТЕЛЬНАЯ

СКЕЛЕТНАЯ

Волокнистая

2. плотная

3. оформленная

4. неоформленная

Со специальными свойствами

1. ретикулярная

2. жировая

3. слизистая

4. пигментная

Хрящевая

1. гиалиновый хрящ

2. эластический хрящ

3. волокнистый хрящ

1.грубоволокнистая

2.пластинчатая:

компактное вещество

губчатое вещество

В рыхлой соединительной ткани волокна межклеточного вещества расположены рыхло и имеют разное направление. В плотной имеется большое количество плотно-расположенных волокон, много аморфного вещества и мало клеток.

Строение рыхлой волокнистой соединительной ткани.

Виды клеток:

  1. фибробласты
  2. малодифференцированные
  3. макрофаги
  4. тканевые базофилы
  5. плазмоциты
  6. липоциты
  7. пигментоциты

Межклеточное вещество содержит основное аморфное вещество - коллоид - и волокна :

1. коллагеновые

2. эластические

3. ретикулярные

Фибробласты - наиболее многочисленные клетки (fjbra - волокно, blastos - росток), участвует в образовании основного аморфного вещества и специальных волокон - клетки-ткачи.

Малодифференцированные клетки могут превращаться в адвентициальные клетки (адвентиция - оболочка) и клетки-перициты, сопровождающие кровеносные и лимфатические сосуды. Макрофаги (macros - большой, fagos - пожирающий), участвуют в фагоцитозе и секретируют в межклеточное вещество интерферон, лизоцим, пирогенны. В совокупности формируют макрофагическую систему. Тканевые базофилы (тучные клетки) вырабатывают гепарин, препятствующий свертыванию крови. Плазмоциты участвуют в гуморальном иммунитете и синтезируют антитела - гамма-иммуноглобулины. Липоциты - жировые клетки (резерв), формируют жировую ткань. Пигментоциты содержат меланин. Основное вещество имеет вид геля, обеспечивает транспорт веществ, механическую, опорную и защитную функции.

Коллагеновые волокна (kola - клей) - толстые, прочные, нерастяжимые. Состоят из фибрилла и белка коллагена. Эластические волокна содержат белок эластин, тонкие хорошо растяжимые, увеличиваются в 2-3 раза. Ретикулярные - незрелые коллагеновые волокна.

Рыхлая соединительная ткань содержится во всех органах, т.к. сопровождает кровеносные и лимфатические сосуды. Плотная неоформленная волокнистая ткань образует соединительно - тканную основу кожи, плотная оформленная ткань - сухожилия мышц, связки, фасции, перепонки. В соединительной ткани со специальными свойствами преобладают однородные клетки.

Ретикулярная соединительная имеет сетевидное строение. Состоит из ретикулярных клеток и ретикулярных волокон. Ретикулярные клетки имеют отростки, которые, переплетаясь, образуют сеть. Ретикулярные волокна располагаются во всех направлениях. Она образует скелет костного мозга, лимфатических узлов и селезенки. Жировая ткань - скопление липоцитов. В большом количестве содержится в большом и малом сальниках, брыжейке кишки и вокруг некоторых органов (почки). Является депо жира, защищает от механических повреждений, обеспечивает физическую терморегуляцию. Слизистая ткань имеется только у зародыша в пупочном канатике, защищая пупочные сосуды от повреждения. Пигментная - скопление меланоцитов - кожа в области сосков, мошонки, анального отверстия, родимые пятна, родинки и радужка глаз.

Скелетная выполняет функции опоры, защиты, вводно-солевого обмена.

Хрящевая ткань состоит из хрящевых пластинок, собранных по - трое, основного вещества и волокон.

Виды хрящей :

1. Гиалиновый хрящ - суставные хрящи, хрящи ребер, эпифизарные хрящи. Он прозрачен, голубоватого цвета (стекловидный).

2. Эластический хрящ - в органах, где возможны изгибы (ушная раковина, слуховая труба, наружный слуховой проход, надгортанник). Непрозрачный, желтого цвета.

3. Волокнистый - межпозвоночные диски, мениски, внутрисуставные диски, грудино-ключичный и височно-нижнечелюстной суставы. Непрозрачный, желтого цвета.

Рост и питание хряща осуществляется за счет надхрящницы, окружающей его. Хрящевая клетка - хондроцит.

Костная ткань является очень прочной из-за межклеточного вещества, пропитанного солями сальция. Она образует все кости скелета, является депо кальция и фосфора.

Виды клеток:

  • Остеобласты (osteon - кость, blastos - росток) - молодые клетки, образующие костную ткань.
  • Остеоциты (osteon - кость, cutos - клетка) - основные клетки, утратившие способность к делению
  • Остеокласты (osteon - кость, clao - раздроблять) - клетки, разрушающие кость и обызвествляющие хрящ.

Грубоволокнистая соединительная ткань - пучки коллагеновых волокон, расположенных в разных направлениях. Находится в зародышах и молодых организмах.

Пластинчатая костная ткань состоит из костных пластинок и образует все кости скелета. Если костные пластинки упорядочены, образуется компактное вещество (диафизы трубчатых костей), если образуют перекладины, губчатое вещество (эпифизы трубчатых костей).

Мышечная ткань.

Образует скелетные мышцы и мышечные оболочки внутренних органов, кровеносных и лимфатических сосудов. Благодаря ее сокращению происходят дыхательные движения, передвижение пищи, крови и лимфы по сосудам. Произошла из мезодермы. Основным свойством является ее сократимость - способность укорачиваться на 50% длины.

Виды мышечной ткани:

1. поперечно-полосатая (исчерченная и скелетная)

2. гладкая (неисчерченная и висцеральная)

3. сердечная

Поперечно-полосатая образует скелетные мышцы (скелетная). Состоит из вытянутых волокон, имеющих форму цилиндрических нитей, концы которых крепятся к сухожилиям. Эти параллельные нити - миофибриллы - сократительный аппарат мышц. Каждая миофибрилла состоит из более тонких нитей - миофиламенты, содержащие сократительные белки актин и миозин.

На микроскопическом уровне эта ткань состоит из правильно чередующихся дисков с разными свойствами: темные диски (А) - анизотропные, содержат актин и миозин, светлые диски (И), содержат только актин. Они по-разному преломляют световые лучи, придавая ткани исчерченность или полосатость. Клетки этой ткани сливаются между собой - симпласт. Снаружи ткань покрыта оболочками (эндомизий и сарколлема), которые предохраняют ткань от растяжения.

Гладкая мышечная ткань образует стенки полых внутренних органов, кровеносных и лимфатических сосудов, содержится в коже и в сосудистой оболочке глазного яблока. Имеет хорошо выраженные клетки - миоциты - веретенообразной формы. Они собраны в пучки, а пучки в пласты. Сокращение медленное, длительное, автономное. Ткань способна сокращаться до 12 часов в сутки (роды).

Сердечная находится в сердце. Состоит из клеток кардиомиоцитов цилиндрической формы. Они объединяются друг с другом, образуя функциональные волокна. В ткани также содержатся проводящие кардиомиоциты, способные вырабатывать электрические импульсы с частотой 70-90 раз в минуту и способные передавать сигналы к сокращению сердца (проводящая система сердца).

Признаки

Поперечно-полосатая

Гладкая

Сердечная

Местонахождение ткани

Крепится к костям - сарколемма - мясо

Стенки внутренних органов, кровеносных и лимфатических сосудов

Стенка сердца

Форма клетки

Вытянутая

Веретенообразная

Вытянутая

Число ядер

Множество

Положение ядер

Периферия

Полосатость

Скорость сокращения

Промежуточная

Регуляция сокращения

Произвольная

Непроизвольная

Непроизвольная

Нервная ткань.

Является главным компонентом нервной системы, осуществляющую регуляцию всех процессов и взаимосвязь с внешней средой. Обладает легкой возбудимостью и проводимостью. Произошла из эктодермы. Она включает в себя нейроны (нейроциты) и клетки нейроглии.

Нейрон - многоугольная клетка неправильной формы с отростками, по которым проходят нервные импульсы. Они содержат базофильное вещество, вырабатывающее белки, и нейрофибриллы, проводящие нервные импульсы.

Виды отростков:

1. Длинные (аксоны), проводят возбуждение от тела нейрона, axis - ось. Аксон как правило один, начинается от возвышения на нейроне - аксональный холмик, в котором генерируется нервный импульс.

2. Короткие (дендриты), проводят возбуждение к телу нейрона, dendron - дерево.

Существует одно исключение в организме: в околопозвоночных ганглиях аксоны нейронов короткие, а дендриты длинные.

Классификация нейронов по количеству отростков:

1. Псевдоуниполярные (отросток отходит от нейрона, затем Т-образно делится) - боковые рога спинного мозга.

2. Биполярные (содержат 2 отростка)

3. Мультиполярные (множество отростков)

Классификация по функциям:

1.Афферентные (чувствительные) - проводят импульсы от рецепторов, располагаются на периферии.

2.Промежуточные (вставочные, кондукторные) - осуществляют связь между нейронами (боковые рога спинного мозга)

3.Эфферентные (двигательные) - передают импульсы от ЦНС к рабочему органу.

Нейроглия окружает нейроны и выполняет опорную, трофическую, секреторную и защитную функции. Делится на макроглию и микроглию.

Макроглия (глиоциты):

1. эпендимоциты (спинно-мозговой канал и желудочки головного мозга)

2. астроциты (опора для ЦНС)

3. олигодендроциты (окружают тела нейронов)

Микроглия (глиальные макрофаги) - осуществляют фагоцитоз.

Нервные волокна - отростки нервных клеток, покрытые оболочками. Нерв - совокупность нервных волокон, заключенные в соединительно-тканную оболочку.

Виды нервных волокон:

1. миелиновые (мякотные): состоят из осевого цилиндра, покрытого шванновской и миелиновой оболочками. Через равные промежутки миелиновая оболочка прерывается, оголяя шванновские клетки - перехват Л. Ранвье. Возбуждение передается по таким волокнам скачками через перехваты Ранвье с высокой скоростью - сальтоторно.

2. безмиелиновые (безмякотные): состоят из осевого цилиндра, покрытого только шванновскими клетками. Возбуждение передается очень медленно.

Физиологические свойства нервной ткани:

1. Возбудимость - способность нервного волокна отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

2. Проводимость - способность волокна проводить возбуждение.

3. Рефрактерность - отсутствие возбудимости нервной ткани. Относительная рефрактерность - временное отсутствие возбудимости (отдых). Абсолютная рефрактерность - возбудимость утеряна полностью.

4. Лабильность - способность живой ткани возбуждаться в единицу времени определенное число раз. В нервной ткани она высокая.

Законы проведения возбуждения:

1. Закон анатомической и физиологической непрерывности волокна (перевязка нерва, охлаждение или обезболивание новокаином прекращает процесс возбуждение).

2. Закон двустороннего проведения возбуждения (при нанесении раздражения возбуждение передается в обе стороны: центробежно и центростремительно).

3. Закон изолированного проведения возбуждения (возбуждение не передается на соседние волокна).

Введенский Н.Е. (1883) - нервы практически неутомляемы, т.к. малы энергозатраты при возбуждении и высокая лабильность.

На этом основании И.М.Сеченов - отдых, сопровождающийся умеренной работой мышечных групп (активный отдых) более эффективен для борьбы с утомлением двигательного аппарата, чем покой (пассивный отдых).

Отростки нейронов контактируют между собой и с другими клетками и тканями для передачи нервных импульсов. Синапс (sunaps - связь) - функциональное соединение между пресинаптическим окончанием аксона и мембраной постсинаптической клетки (Шеррингтон).

Строение синапса:

1. пресинаптическая мембрана

2. синаптическая щель

3. постсинаптическая мембрана

1. - электрогенная мембрана, включающая в себя большое количество пузырьков:

  • гранулярная (норадреналин)
  • агранулярная (ацетилхолин)

2. - открывается во внеклеточное пространство и заполнено межтканевой жидкостью

3. электрогенная мембрана мышечного волокна, имеющая большое количество складок, содержащая холинорецепторы (взаимодействуют с ацетилхолином), адренорецепторы (взаимодействуют с норадреналином) и фермент холинэстераза (разрушает ацетилхолин).

Виды синапсов:

1. По виду медиатора:

  • Адренергические
  • Холинергические

2. По действию:

  • Возбуждающие
  • Тормозные

3. По способу передачи возбуждения:

  • Электрические
  • Химические:

1. По локализации:

  • Центральные
  • Периферические

Виды центральных синапсов:

1. аксосоматические

2. аксодендритические

3. аксоаксональные

Виды периферических синапсов:

1. нервно-мышечные

2. нервно-железистые

Подробности

Гистология: понятие о тканях.
Общая гистология изучает

1) структуру и функцию нормальных тканей

2) развитие тканей (гистогенез) в онтогенезе и филогенезе

3) взаимодействие клеток в составе тканей

4) патологии тканей

Частная гистология изучает строение, функции и взаимодействие тканей в составе органов.

Мечников – гипотеза фагоцитоза . Два типа тканей: внутренние - соединительная ткань и кровь, и внешняя – эпителиальная.

Происхождение тканей. Заварзин.
1. Наиболее древние – ткани общего назначения: покровные, ткани внутренней среды.
2. Мышечная и нервная – более поздние, специализированные.

Ткань – филогенетически обусловленная система клеток и межклеточных структур, составляющих морфологическую основу для выполнения основных функций.

Свойства тканей : 1) пограничность – эпителий 2) внутренний обмен – кровь, соед ткань 3) движение – мышечная ткань 4) раздражимость – нервная ткань.

Принципы организации тканей : автономность снижена, клетка-ткань-орган, взаимосвязь возрастает: межклеточный матрикс, мжк организация, система обновления (гистогенез).
Внутри- и межтканевые взаимодействия обеспечивают: рецепторы, молекулы адгезии, цитокины (циркулируют в тканевой жидкости и несут сигналы), факторы роста – действуют на дифференцировку, пролиферацию и миграцию.

Молекулы адгезии : 1. Учавствуют в передаче сигнала 2. а,в-интегрины – встроены в плазмолемму 3. Кадгерины Р, Е, N, - клеточные контакты, десмосомы 4. Селектины А,Р, Е – лейкоциты крови с эндотелием. 5. Ig – подобные белки, ICAM – 1,2, NCAM – проникновение лейкоцитов под эндотелий.
Цитокины (больше 100 видов) – для общения между лейкоцитами, (интерлейкины ((ИЛ-1,18), интерфероны (ИФ-а,ф,у) – противовоспалительные, факторы некроза опухолей (ФНО-а,в), колониестимулирующие факторы: высокий пролиферативный потенциал, образование клонов: ГМ(гранулоциты, макрофаги)-КСФ, факторы роста: ФРФ, ФРК, ТФР ав – морфологические процессы.

Классификация тканей.

Метагенетическая классификация Хлопина, основоположник метода культуры тканей.
Лейдинг – морфофункциональная классификация : эпителиальная, ткани внутренней среды (соед ткань+кровь), мышечная, нервная.

Развитие: пренатальное, постнатаьное. Регенерация: физиологическая (обновление), репаративная (восстановление).
Принципы обновления клеточного состава тканей.

Гистологический ряд дифферон обновляющихся тканей. Клетки-предшественники –не делятся, дифференцированы.
Одна ушла на деление, дифференцировку, вторая сама себя поддерживает. На это способна только стволовая клетка . Она очень редко делятся (ассиметрично) – сохранение потенциала и дифференцировки. В итоге клетка входит в терминальную диф. Пока клетки пролиферируют – синтез ДНК-появление специфичных иРНК- специфические белки, диф клетки.

Свойства стволовой клетки : самоподдержание, способность к дифференцировке, высокий пролиферативный потенциал, способность репопулировать ткань in vivo.
Ниша стволовых клеток – это группа клеток и внеклеточный матрикс, которые способны неограниченно долго поддерживать самоподдерживание СК.
Классификация (тотипотентность понижается) . Тотипотентные-зигота, плюрипотентные – ЭСК, мультипотентные – мезенхимные (кроветворная, эпидермальная) СК, сателлитная – униполярные (клетки мышц), клетки опухолей.
Амплефаеры – эти клетки делятся очень активно, увеличивают популяцию.

Классификация тканей по типу обновления:
1. Высокий уровень обновления и высокий регенеративный потенциал – клетки крови, эпидермиса, эпидермис молочной железы.
2. Низкий уровень обновления, высокий регенеративный потенциал – печень, скелетные мышцы, поджелудочная железа.
3. Низкие уровни обновления и регенерации – головной мозг (нейроны), спинной мозг, сетчатка, почка, сердце.

Онтофилогенетическая классификация (Хлопин).
1. Эктодермальный тип – из экзодермы, многослойное или многорядное строение, защитная ф.
2. Этнеродермальный – из энтодермы, однослойный призматический, ф всасывания веществ (желудок, каемчатый эпителий тонкой кишки)
3. Целонефродермальный – из мезодермы, однослойный плоский, кубический или призматический. Ф барьерная или экскреторная (мочевые канальцы)
4. Эпендимоглиальный - из нервной трубки, в полостях мозга.
5. Ангиодермальный – из мезенхимы, выстилает эндотелиальную выстилку кровеносных сосудов.

Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ

Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи.

Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество.

Характеристика структурных компонентов ткани

Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон.

Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится:

1) популяция фибробластов;

2) популяция макрофагов;

3) популяция тканевых базофилов и др.

Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития.

Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани.

Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбоциты).

Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеновых, ретикулярных, эластических).

Межклеточное вещество неодинаково выражено в разных тканях.

Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе

В онтогенезе различают следующие этапы развития тканей:

1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы;

2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша;

3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков;

4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.

Имеется несколько теорий развития тканей в филогенезе:

1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов;

2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей.

Классификации тканей

Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани);

3) мышечные ткани;

4) нервную ткань.

Тканевой гомеостаз (или поддержание структурного постоянства тканей)

Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.

Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции.

Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.

Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.

При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.

Регенерация тканей

Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

Формы регенерации:

1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение);

2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).

Уровни регенерации:

1) клеточный (внутриклеточный);

2) тканевой;

3) органный.

Способы регенерации:

1) клеточный;

2) внутриклеточный;

3) заместительный.

Факторы, регулирующие регенерацию:

1) гормоны;

2) медиаторы;

3) кейлоны;

4) факторы роста и др.

Интеграция тканей

Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей.

Механизмы интеграции:

1) межтканевые (обычно индуктивные) взаимодействия;

2) эндокринные влияния;

3) нервные влияния.

Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань.

Из книги Справочник по уходу за больными автора Айшат Кизировна Джамбекова

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

Принципы организации рационального режима Воспитание здорового подростка с гармонично развитыми духовными и физическими силами неразрывно связано с разработкой рационального режима дня и гигиенической регламентацией различных сторон жизнедеятельности

Из книги Экстренная помощь при травмах, болевых шоках и воспалениях. Опыт работы в чрезвычайных ситуациях автора Виктор Федорович Яковлев

6. Общие принципы лечения остеомиелита. Общие и местные, консервативные и оперативные методы лечения Местное лечение заключается в создании оттока для гноя, очищении костномозгового канала и его дренировании. Общее лечение заключается в дезинтоксикационной,

Из книги Гистология автора В. Ю. Барсуков

4. Общие принципы лечения гнойных заболеваний кисти. Общие и местные, консервативные и оперативные методы лечения В зависимости от стадии, на которой находится воспалительный процесс, предпочтение может быть отдано как консервативным, так и оперативным методам лечения.

1. Классификация травматических повреждений мягких тканей. Сдавление, ушиб, растяжение, разрыв. Общие вопросы транспортной иммобилизации Различают открытые (с повреждением целостности кожных покровов) и закрытые (без нарушения целостности кожных покровов) повреждения

2. Растяжения и разрывы мягких тканей – основные морфологические и клинические нарушения в месте воздействия повреждающего фактора. Диагностика и общие принципы лечения растяжений и разрывов Растяжения и разрывы. Эти травмы также связаны с воздействием механического

Из книги Терапевтическая стоматология. Учебник автора Евгений Власович Боровский

4. Принципы лечения переломов. Общие принципы лечения – адекватное обезболивание, репозиция и фиксация отломков в правильном положении Лечение переломов в стационаре заключается в различных способах репозиции и фиксации отломков в необходимом положении. Общие

Из книги Современные хирургические инструменты автора Геннадий Михайлович Семенов

Принципы организации энергетических потоков тела Для понимания сути метода выстукивания необходимо иметь представление о принципах организации энергетических магистралей тела и близлежащего к нему пространства. Различают три типа энергетических магистралей.Первый

Из книги Живое питание Арнольда Эрета (с предисловием Вадима Зеланда) автора Арнольд Эрет

9. Общие принципы организации тканей Ткань – это система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнении определенных функций. 1. Характеристика структурных компонентов ткани Клетки – основные,

Из книги Биоритмы, или Как стать здоровым автора Валерий Анатольевич Доскин

Из книги автора

6.6.1. Принципы и техника препарирования твердых тканей зуба при кариесе Препарирование полости является важным этапом лечения кариеса зубов, так как только правильное его проведение исключает дальнейшее разрушение твердых тканей и обеспечивает надежную фиксацию

Из книги автора

5.3. Общие правила рассечения тканей с помощью ультразвуковых инструментов Не следует сильно надавливать рабочей кромкой инструмента на ткани, так как это может привести к развитию ряда нежелательных эффектов:1) сильному нагреванию тканей в зоне

Из книги автора

1. ОБЩИЕ ПРИНЦИПЫ Любая болезнь, под каким бы названием она ни была известна медицинской науке, представляет собой засорение трубчатой системы человеческого тела. Таким образом, любой болезненный симптом - это признак местного засорения, вызванного скоплением в данном

Из книги автора

Хронобиологические принципы в организации космических полетов В космосе космонавты могут наблюдать восход солнца 16–20 раз за сутки. У них совершенно меняется представление о земных сутках, тем не менее «забыть» земные сутки или отвлечься от них почти невозможно. В свое

В результате эволюционного развития у высших многоклеточных организмов возникли ткани.

Ткани - это исторически (филогенетически) сложившиеся системы клеток и неклеточных структур, обладающих общностью строения, в ряде случаев - общностью происхождения, и специализированные на выполнении определенных функций.

В любой системе все ее элементы упорядочены в пространстве и функционируют согласованно друг с другом; система в целом обладает при этом свойствами, не присущими ни одному из ее элементов, взятому в отдельности. Соответственно и в каждой ткани ее строение и функции несводимы к простой сумме свойств отдельных входящих в нее клеток.

Ведущими элементами тканевой системы являются клетки. Кроме клеток, различают клеточные производные и межклеточное вещество.

К производным клеток относят симпласты (например, мышечные волокна, наружная часть трофобласта), синцитий (развивающиеся мужские половые клетки, пульпа эмалевого органа), а также постклеточные структуры (эритроциты, тромбоциты, роговые чешуйки эпидермиса и т. д.).

Межклеточное вещество подразделяют на основное вещество и на волокна. Оно может быть представлено золем, гелем или быть минерализованным.

Среди волокон различают обычно три вида: коллагеновые, ретикулярные, эластические.

РАЗВИТИЕ ТКАНЕЙ

Свойства любой ткани несут на себе отпечаток всей предыдущей истории ее становления. Под развитием живой системы понимаются ее преобразования и в филогенезе, и в онтогенезе. Ткани как системы, состоящие из клеток и их производных, возникли исторически с появлением многоклеточных организмов.

Уже у низших представителей животного мира, таких как губки и кишечнополостные, клетки имеют различную функциональную специализацию и соответственно различное строение, так что могут быть объединены в различные ткани. Однако признаки этих тканей еще не стойки, возможности превращения клеток и соответственно одних тканей в иные достаточно широки. По мере исторического развития животного мира совершалось закрепление свойств отдельных тканей, а возможности их взаимных превращений ограничивались, количество же тканей одновременно постепенно увеличивалось в соответствии со все более возрастающей специализацией.

Онтогенез. Понятия детерминации и коммитирования.

Развитие организма начинается с одноклеточной стадии - зиготы. В ходе дробления возникают бластомеры, но совокупность бластомеров – это еще не ткань. Бластомеры на начальных этапах дробления еще не детерминированы (они тотипотентны). Если отделить их один от другого, - каждый может дать начало полноценному самостоятельному организму – механизм возникновения монозиготных близнецов. Постепенно на следующих стадиях происходит ограничение потенций. В основе его лежат процессы, связанные с блокированием отдельных компонентов генома клеток и детерминацией.

Детерминация – это процесс определения дальнейшего пути развития клеток на основе блокирования отдельных генов.

Понятие «коммитирование» тесно связано с клеточным делением (т.н. коммитирующий митоз).

Коммитирование – это ограничение возможных путей развития вследствие детерминации. Коммитирование совершается ступенчато. Сначала соответствующие преобразования генома касаются крупных его участков. Затем все более детализируются, поэтому вначале детерминируются наиболее общие свойства клеток, а затем и более частные.

Как известно, на этапе гаструляции возникают эмбриональные зачатки. Клетки, которые входят в их состав, еще не окончательно детерминированы, так что из одного зачатка возникают клеточные совокупности, обладающие разными свойствами. Следовательно, один эмбриональный зачаток может служить источником развития нескольких тканей.

ТЕОРИЯ ЭВОЛЮЦИИ ТКАНЕЙ

Последовательная ступенчатая детерминация и коммитирование потенций однородных клеточных группировок - дивергентный процесс. В общем виде эволюционная концепция дивергентного развития тканей в филогенезе и в онтогенезе была сформулирована Н.Г.Хлопиным. Современные генетические концепции подтверждают правоту его представлений. Именно Н.Г.Хлопин ввел понятие о генетических тканевых типах. Концепция Хлопина хорошо отвечает на вопрос, как и какими путями происходило развитие и становление тканей, но не останавливается на причинах, определяющих пути развития.

Причинные аспекты развития тканей раскрывает теория параллелизмов А.А.Заварзина. Он обратил внимание на сходство строения тканей, которые выполняют одинаковые функции у животных, принадлежащих даже к весьма удаленным друг от друга эволюционным группировкам. Вместе с тем известно, что, когда эволюционные ветви только расходились, у общих предков таких специализированных тканей еще не было. Следовательно, в ходе эволюции в разных ветвях филогенетического древа самостоятельно, как бы параллельно, возникали одинаково организованные ткани, выполняющие сходную функцию. Причиной этого является естественный отбор: если возникали какие-то организмы, у которых соответствие строения и функции клеток, тканей, органов нарушалось, они были и менее жизнеспособны. Теория Заварзина отвечает на вопрос, почему развитие тканей шло тем, а не иным путем, раскрывает казуальные аспекты эволюции тканей.

Концепции А.А.Заварзина и Н.Г.Хлопина, разработанные независимо одна от другой, дополняют друг друга и были объединены А.А.Брауном и В.П.Михайловым: сходные тканевые структуры возникали параллельное ходе дивергентного развития.

(См. Курс гистологии А.А.Заварзина и А.В.Румянцева, 1946г.)

Развитие тканей в эмбриогенезе происходит в результате дифференцировки клеток. Под дифференцировкой понимают изменения в структуре клеток в результате их функциональной специализации, обусловленные активностью их генетического аппарата. Различают четыре основных периода дифференцировки клеток зародыша - оотипическую, бластомерную, зачатковую и тканевую дифференцировку. Проходя через эти периоды клетки зародыша образуют ткани (гистогенез).
КЛАССИФИКАЦИЯ ТКАНЕЙ

Имеется несколько классификаций тканей. Наиболее распространенной является так называемая морфофункциональная классификация, по которой насчитывают четыре группы тканей:
эпителиальные ткани;
ткани внутренней среды;
мышечные ткани;
нервная ткань.

К тканям внутренней среды относятся соединительные ткани, кровь и лимфа.

Эпителиальные ткани характеризуются объединением клеток в пласты или тяжи. Через эти ткани совершается обмен веществ между организмом и внешней средой. Эпителиальные ткани выполняют функции защиты, всасывания и экскреции. Источниками формирования эпителиальных тканей являются все три зародышевых листка - эктодерма, мезодерма и энтодерма.

Ткани внутренней среды (соединительные ткани, включая скелетные, кровь и лимфа) развиваются из так называемой эмбриональной соединительной ткани - мезенхимы. Ткани внутренней среды характеризуются наличием большого количества межклеточного вещества и содержат различные клетки. Они специализируются на выполнении трофической, пластической, опорной и защитной функциях.

Мышечные ткани специализированны на выполнении функции движения. Они развивается в основном из мезодермы (поперечно исчерченная ткань) и мезенхимы (гладкая мышечная ткань).

Нервная ткань развивается из эктодермы и специализируется на выполнении регуляторной функции - восприятии, проведении и передачи информации.

ОСНОВЫ КИНЕТИКИ КЛЕТОЧНЫХ ПОПУЛЯЦИЙ

Каждая ткань имеет или имела в эмбриогенезе стволовые клетки - наименее дифференцированные и наименее коммитированные. Они образуют самоподдерживающуюся популяцию, их потомки способны дифференцироваться в нескольких направлениях под влиянием микроокружения (факторов дифференцировки), образуя клетки-предшественники и, далее, функционирующие дифференцированные клетки. Таким образом, стволовые клетки полипотентны. Они делятся редко, пополнение зрелых клеток ткани, если это необходимо, осуществляется в первую очередь за счет клеток следующих генераций (клеток-предшественников). По сравнению со всеми другими клетками данной ткани стволовые клетки наиболее устойчивы к повреждающим воздействиям.

Хотя в состав ткани входят не только клетки, именно клетки являются ведущими элементами системы, т. е. определяют ее основные свойства. Их разрушение приводит к деструкции системы и, как правило, их гибель делает ткань нежизнеспособной, особенно если были затронуты стволовые клетки.

Если одна из стволовых клеток вступает на путь дифференциации, то в результате последовательного ряда коммитирующих митозов возникают сначала полустволовые, а затем и дифференцированные клетки со специфической функцией. Выход стволовой клетки из популяции служит сигналом для деления другой стволовой клетки по типу некоммитирующего митоза. Общая численность стволовых клеток в итоге восстанавливается. В условиях нормальной жизнедеятельности она сохраняется приблизительно постоянной.

Совокупность клеток, развивающихся из одного вида стволовых клеток, составляет стволовой дифферон. Часто в образовании ткани участвуют различные диффероны. Так, в состав эпидермиса, кроме кератиноцитов, входят клетки, развивающиеся в нейральном гребне и имеющие другую детерминацию (меланоциты), а также клетки, развивающиеся путем дифференциации стволовой клетки крови, т. е. принадлежащие уже к третьему дифферону (внутриэпидерминальные макрофаги, или клетки Лангерганса).

Дифференцированные клетки наряду с выполнением своих специфических функций способны синтезировать особые вещества - кейлоны, тормозящие интенсивность размножения клеток-предшественников и стволовых клеток. Если в силу каких-либо причин количество дифференцированных функционирующих клеток уменьшается (например, после травмы), тормозящее действие кейлонов ослабевает и численность популяции восстанавливается. Кроме кейлонов (местных регуляторов), клеточное размножение контролируется гормонами; одновременно продукты жизнедеятельности клеток регулируют активность желёз внутренней секреции. Если какие-либо клетки под воздействием внешних повреждающих факторов претерпевают мутации, они элиминируются из тканевой системы вследствие иммунологических реакций.

Выбор пути дифференциации клеток определяется межклеточными взаимодействиями. Влияние микроокружения изменяет активность генома дифференцирующейся клетки, активируя одни и блокируя другие гены. У клеток, уже дифференцированных и утративших способность к дальнейшему размножению, строение и функция тоже могут изменяться (например, у гранулоцитов начиная со стадии метамиелоцита). Такой процесс не приводит к возникновению различий среди потомков клетки и для него больше подходит название «специализация».

РЕГЕНЕРАЦИЯ ТКАНЕЙ

Знание основ кинетики клеточных популяций необходимо для понимания теории регенерации, т.е. восстановления структуры биологического объекта после ее разрушения. Соответственно уровням организации живого различают клеточную (или внутриклеточную), тканевую, органную регенерацию. Предметом общей гистологии является регенерация на тканевом уровне.

Различают регенерацию физиологическую, которая совершается постоянно в здоровом организме, и репаративную - вследствие повреждения. У разных тканей возможности регенерации неодинаковы.

В ряде тканей гибель клеток генетически запрограммирована и совершается постоянно (в многослойном ороговевающем эпителии кожи, в однослойном каемчатом эпителии тонкой кишки, в крови). За счет непрерывного размножения, в первую очередь полустволовых клеток-предшественников, количество клеток в популяции пополняется и постоянно находится в состоянии равновесия. Наряду с запрограммированной физиологической гибелью клеток во всех тканях происходит и незапрограммированная - от случайных причин: травмирования, интоксикаций, воздействий радиационного фона. Хотя в ряде тканей запрограммированной гибели нет, но в течение всей жизни в них сохраняются стволовые и полу-стволовые клетки. В ответ на случайную гибель возникает их размножение и популяция восстанавливается.

У взрослого человека в тканях, где стволовых клеток не остается, регенерация на тканевом уровне невозможна, она происходит лишь на клеточном уровне.

Органы и системы организма являются многотканевыми образованиями, в которых различные ткани тесно взаимосвязаны и взаимообусловлены при выполнении ряда характерных функций. В процессе эволюции у высших животных и человека возникли интегрирующие и регулирующие системы организма - нервная и эндокринная. Все многотканевые компоненты органов и систем организма находятся под контролем этих регулирующих систем и, таким образом, осуществляется высокая интеграция организма как единого целого. В эволюционном развитии животного мира с усложнением организации возрастала интегрирующая и регулирующая роль нервной системы, в том числе и в нервной регуляции деятельности эндокринных желез.

Ткань - это сложившаяся в процессе филогенеза частная система организма, состоящая из одного или нескольких дифферонов клеток и их производных и выполняющих спе­циальную функцию.

Что такое дифферон? Это совокупность клеточных форм, составляющих линию дифференцировки, или ряд клеток на разных стадиях дифференцировки, развиваю­щихся из одной изначальной клетки. Например, дифферон эпителиальных клеток эпидермиса включает ряд, состоя­щий из 5 клеток: 1) базальные (стволовые) клетки; 2) клет­ки шиповатого слоя; 3) клетки зернистого слоя; 4) клетки блестящего слоя; 5) клетки рогового слоя (чешуйки).

Что такое производные клеток? Это симпласт, синцитий и постклеточные структуры. Почему симпласт - производ­ное клеток? Потому что он образуется в эмбриогенезе в ре­зультате слияния большого количества клеток, называемых миобластами. Синцитий (соклетие) - это группа клеток, сое­диненных друг с другом при помощи протоплазматических мостиков. Постклеточные структуры - это, например, безъядерные эритроциты, тромбоциты, т. е. кровяные пла­стинки, которые отщепляются от цитоплазмы гигантских клеток красного костного мозга - мегакариоцитов.

Классификация тканей. Ткани классифицируются на: эпителиальные ткани, которые подразделяются на покров­ные и железистые; ткани внутренней среды, включающие кровь, лимфу, хрящевую и костную ткани; мышечные ткани, включающие гладкую и исчерченную, или поперечно-поло­сатую, подразделяющуюся на сердечную и скелетную; нер­вную ткань.

Для изложения материала о любой ткани необходимо рас­смотреть 4 аспекта: 1) источники развития ткани; 2) локали­зация ткани; 3) строение ткани; 4) функция ткани.

Дифференцировка клеток тканей. В процессе развития тканей происходит дифференцировка их клеточных элемен­тов. Дифференцировка - это стойкое структурно-функцио­нальное изменение ранее однородных клеток. Благодаря че­му происходит дифференцировка клеточных элементов тка­ни? Дифференцировка определяется детерминацией. Что же такое детерминация? Это программа дифференцировки кле­ток, записанная (закодированная) в генах ДНК хромосом. В процессе дифференцировки формируются активно функ­ционирующие клетки.

Временная дифференцировка. В ее основе лежит по­следовательное (поэтапное) изменение клеток в составе тканей.

Пространственная дифференцировка. В результате ее образуются различные типы специализированных клеток в составе тканей.

Биохимическая дифференцировка. В результате ее об­разуются клетки ткани, синтезирующие специфические ти­пы белков.

Сначала дифференцируются стволовые клетки, т. е. изна­чальные клетки, дающие начало дифферону клеток. Основ­ными признаками стволовых клеток являются:


1) способ­ность к самоподдержанию;

2) способность к делению;

3) спо­собность части клеток дифференцироваться после деления.

Процесс дифференцировки клеток тканей регулируется нер­вной, эндокринной системами и тканевыми механизмами ре­гуляции. К внутритканевым механизмам регуляции можно отнести кейлоны. Кейлоны - это вещества, вырабатываемые зрелыми (дифференцированными) клетками, способные по­давлять дифференцировку недифференцированных клеток. В процессе дифференцировки клетки ограничиваются пути ее развития. Например, первые бластомеры, образовавшиеся в результате дробления зиготы, обладают тотипотентностью, т. е. из каждого бластомера может развиваться самостоятель­ный организм. При дальнейшем развитии зародыша эта воз­можность утрачивается, т. е. суживаются пути развития клет­ки. Такие клетки называются коммитированными. а процесс ограничения путей развития - коммитировсшием.

Регенерация тканей. Большинство тканей обладает спо­собностью к регенерации, т. е. восстановлению после есте­ственной гибели или повреждения. Регенераторный процесс в различных тканях протекает неодинаково. На этом основа­нии можно выделить несколько типов регенерации.

Внутриклеточная регенерация - это восстановление внутриклеточных структур (органелл). Характерна для кле­ток нервной ткани и сердечной мышцы, слюнных желез и пе­чени, так как в этих органах нет стволовых клеток.

Клеточная регенерация осуществляется за счет деления клеток. Характерна для тканей, в которых есть стволовые клетки (эпителиальные ткани, скелетная мышечная и др.).

Гистотипическая регенерация - это замещение спе­цифических структур органа (паренхимных клеток) соедини­тельной тканью. Что такое специфические структуры или паренхимные клетки? Это клетки, имеющиеся только в дан­ном органе. Например, в печени - это печеночные клетки (гепатоциты), в поджелудочной железе - панкреатоциты, и т. д. Кроме паренхимных клеток, в каждом органе есть клет­ки стромы. Строма почти во всех органах состоит из соеди­нительной ткани.

Органотипическая регенерация - это замещение погибших специфических клеток органа паренхимными клетками.

Физиологическая регенерация - это восстановление клеток тканей после их естественной гибели.

Репаративная регенерация - это восстановление кле­ток ткани или органа после повреждения.

Стволовые (камбиальные) клетки в одних тканях распола­гаются компактно (характерно для эпителия крипт кишечни­ка), в других - диффузно (характерно для эпидермиса кожи).

Не все ткани одинаково способны к регенерации. Зависит это от наличия в ткани стволовых (камбиальных) клеток. Если в ткани имеются только высокодифференцированные клетки, то в ней органотипическая репаративная регенера­ция невозможна. К таким тканям относятся: 1) нервная; 2) сердечная мышечная; 3) сустентоциты извитых семенных канальцев семенников. В клетках этих тканей происходит только внутриклеточная регенерация, т. е. обновление орга­нелл внутри клетки. Внутриклеточная регенерация поддер­живает структуру клеток на необходимом уровне, от этого за­висит жизнедеятельность ткани.

Почему же, например, в сердечной мышечной ткани не Может быть клеточной регенерации, а возможна только вну­триклеточная? Объясняется это тем, что в этой ткани нет камбиальных клеток (миосателлитоцитов). При повреждении сердечной мышечной ткани происходит только гистотипическая регенерация, т. е. замещение мышечных клеток соеди­нительной тканью.

В организме имеются обновляющиеся ткани, например кровь, соединительная ткань, эпителий. В этих тканях име­ются стволовые (камбиальные) клетки. В крови, например, имеются все клетки дифферона. Репаративная регенерация эпителия осуществляется и путем деления клеток, и внутри­клеточной регенерацией. Эпителиальные ткани устойчивы к повреждающему действию внешних факторов, так как они обладают высокой степенью регенерации.