Аморфные твердые тела примеры. Общая характеристика аморфных тел

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.


Например, galena - галенит, pyrite - пирит, quartz - кварц. Грани кристалла пересекаются под прямым углом в галените (PbS) и пирите (FeS 2), под другими углами в кварце.

Свойства кристаллов

  • постоянный объём;
  • правильная геометрическая форма;
  • анизотропия - различие механических, световых, электрических и тепловых свойств от направления в кристалле;
  • чётко определённая температура плавления, так как она зависит от регулярности кристаллической решётки. Межмолекулярные силы, удерживающие твёрдое вещество вместе, однородны, и требуется одинаковое количество тепловой энергии, чтобы одновременно разорвать каждое взаимодействие.

Аморфные тела

Примерами аморфных тел, не имеющих строгой структуры и повторяемости ячеек кристаллической решётки, являются: стекло, смола, тефлон, полиуретан, нафталин, поливинилхлорид.



Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.

Вы когда-нибудь задумывались о том, что представляют собой загадочные аморфные вещества? По строению они отличаются и от твердых, и от жидких. Дело в том, что такие тела находятся в особом конденсированном состоянии, имеющем только ближний порядок. Примеры аморфных веществ - смола, стекло, янтарь, каучук, полиэтилен, поливинилхлорид (наши любимые пластиковые окна), различные полимеры и другие. Это твердые тела, у которых нет кристаллической решетки. Еще к ним можно отнести сургуч, различные клеи, эбонит и пластмассы.

Необыкновенные свойства аморфных веществ

Во время расщепления в аморфных телах не образуются грани. Частицы совершенно беспорядочны и находятся на близком расстоянии друг к другу. Они могут быть как сильно густыми, так и вязкими. Как на них влияют внешние воздействия? Под влиянием различных температур тела становятся текучими, словно жидкости, и одновременно довольно упругими. В случае, когда внешнее воздействие длится недолго, вещества аморфного строения могут при мощном ударе расколоться на кусочки. Длительное влияние извне приводит к тому, что они просто-напросто текут.

Попробуйте провести дома небольшой эксперимент с применением смолы. Положите ее на твердую поверхность, и вы заметите, что она начинает плавно растекаться. Правильно, ведь вещество! Скорость зависит от показателей температуры. Если она будет сильно высокой, то растекаться смола начнет заметно быстрее.

Что еще характерно для таких тел? Они могут принимать любую форму. Если аморфные вещества в виде маленьких частиц поместить в сосуд, например, в кувшин, то они также примут форму сосуда. Еще они являются изотропными, то есть проявляют одинаковые физические свойства по всем направлениям.

Плавление и переход в другие состояния. Металл и стекло

Аморфное состояние вещества не подразумевает поддержания какой-либо определенной температуры. При низких показателях тела застывают, при высоких - плавятся. Кстати, от этого зависит и степень вязкости таких веществ. Низкая температура способствует пониженной вязкости, высокая, наоборот, ее повышает.

Для веществ аморфного типа можно выделить еще одну особенность - переход в кристаллическое состояние, причем самопроизвольный. Почему так происходит? Внутренней энергии в кристаллическом теле намного меньше, чем в аморфном. Мы это можем заметить на примере стеклянной продукции - со временем стекла становятся мутными.

Металлическое стекло - что же это такое? Металл можно избавить от кристаллической решетки в ходе плавления, то есть сделать вещество аморфного строения стеклообразным. Во время застывания при искусственном охлаждении кристаллическая решетка снова образуется. Аморфный металл имеет просто поразительную стойкость к коррозии. Например, сделанный из него кузов автомобиля не нуждался бы в различных покрытиях, так как не подвергался бы самопроизвольному разрушению. Аморфным веществом является такое тело, атомная структура которого обладает невиданной прочностью, а значит, аморфный металл мог бы применяться в совершенно любой промышленной отрасли.

Кристаллическое строение веществ

Чтобы хорошо разбираться в характеристиках металлов и уметь с ними работать, нужно обладать знаниями о кристаллическом строении тех или иных веществ. Производство продукции из металлов и область металлургии не смогли бы получить такое развитие, если бы у людей не было определенных знаний об изменениях в структуре сплавов, технологических приемах и эксплуатационных характеристиках.

Четыре состояния вещества

Общеизвестно, что существует четыре агрегатных состояния: твердое, жидкое, газообразное, плазменное. Твердые аморфные вещества могут быть и кристаллическими. При таком строении может наблюдаться пространственная периодичность в расположении частиц. Эти частицы в кристаллах могут выполнять периодическое движение. Во всех телах, которые мы наблюдаем в газообразном или жидком состоянии, можно заметить движение частиц в виде хаотичного беспорядка. Аморфные твердые вещества (например, металлы в конденсированном состоянии: эбонит, стеклянная продукция, смолы) можно называть жидкостями замороженного типа, потому что у них при изменении формы можно заметить такую характерную черту, как вязкость.

Отличие аморфных тел от газов и жидкостей

Проявления пластичности, упругости, упрочнения при деформации свойственны многим телам. Кристаллические и аморфные вещества в большей степени обладают этими характеристиками, в то время как жидкости и газы не имеют таких свойств. Но зато можно заметить, что они способствуют упругому изменению объема.

Кристаллические и аморфные вещества. Механические и физические свойства

Что собой представляют кристаллические и аморфные вещества? Как уже упоминалось выше, аморфными можно назвать те тела, которые обладают огромным коэффициентом вязкости, и при обыкновенной температуре их текучесть невозможна. А вот высокая температура, наоборот, позволяет, им быть текучими, как жидкость.

Совершенно другими представляются вещества кристаллического типа. Эти твердые тела могут иметь свою температуру плавления, зависящую от внешнего давления. Получение кристаллов возможно, если охладить жидкость. Если не принимать определенных мер, то можно заметить, что в жидком состоянии начинают возникать различные центры кристаллизации. В области, окружающей эти центры, происходит образование твердого вещества. Очень маленькие кристаллики начинают соединяться друг с другом в беспорядочном порядке, и получается так называемый поликристалл. Такое тело является изотропным.

Характеристики веществ

Что определяет физические и механические характеристики тел? Важное значение имеют атомные связи, а также тип кристаллической структуры. Кристаллам ионного типа характерны ионные связи, что означает плавный переход от одних атомов к другим. При этом происходит образование положительно и отрицательно заряженных частиц. Ионную связь мы можем наблюдать на простом примере - такие характеристики свойственны разнообразным оксидам и солям. Еще одна особенность ионных кристаллов - низкая проводимость тепла, но ее показатели могут заметно возрастать при нагревании. В узлах кристаллической решетки можно заметить различные молекулы, которые отличаются крепкой атомной связью.

Множество минералов, которые мы встречаем повсеместно в природе, имеют строение кристаллическое. И аморфное состояние вещества - это тоже природа в чистом виде. Только в этом случае тело представляет собой нечто бесформенное, а вот кристаллы могут принимать формы красивейших многогранников с наличием плоских граней, а также образовывать новые удивительной красоты и чистоты твердые тела.

Что представляют собой кристаллы? Аморфно-кристаллическая структура

Форма таких тел постоянна для определенного соединения. Например, берилл всегда выглядит как шестигранная призма. Проведите небольшой эксперимент. Возьмите небольшой кристаллик поваренной соли кубической формы (шар) и положите его в специальный раствор как можно более насыщенный той же поваренной соли. Со временем вы заметите, что этот тело осталось неизменным - оно снова приобрело форму куба или шара, которая присуща именно кристаллам поваренной соли.

3. - поливинилхлорид, или всем известные пластиковые окна из ПВХ. Он устойчив к пожарам, так как считается трудногорючим, обладает повышенной механической прочностью и электроизоляционными свойствами.

4. Полиамид - вещество, обладающее очень высокой прочностью, стойкостью к износу. Ему свойственны высокие диэлектрические характеристики.

5. Плексиглас, или полиметилметакрилат. Его мы можем применять в сфере электротехники или использовать как материал для конструкций.

6. Фторопласт, или политетрафторэтилен, - известный диэлектрик, который не проявляет свойств растворения в растворителях органического происхождения. Обширный диапазон температур и хорошие диэлектрические свойства позволяют применять его как гидрофобный или антифрикционный материал.

7. Полистирол. Этот материал не подвержен воздействию кислот. Он, так же как фторопласт и полиамид, может считаться диэлектриком. Очень прочен в отношении механического воздействия. Полистирол используют повсеместно. Например, он хорошо зарекомендовал себя как конструкционный и электроизоляционный материал. Применяется в электро- и радиотехнике.

8. Наверное, самый известный для нас полимер - это полиэтилен. Материал проявляет устойчивость при воздействии агрессивной среды, он абсолютно не пропускает влагу. Если упаковка выполнена из полиэтилена, можно не бояться, что содержимое испортится под воздействием сильного дождя. Полиэтилен - это тоже диэлектрик. Его применение обширно. Из него изготавливают трубные конструкции, различные электротехнические изделия, изоляционную пленку, оболочки для кабелей телефонных и силовых линий, детали для радио и другой аппаратуры.

9. Полихлорвинил - это высокополимерное вещество. Он является синтетическим и термопластичным. Обладает структурой молекул, которые несимметричны. Почти не пропускает воду и изготавливается путем прессования с помощью штамповки и путем формования. Полихлорвинил применяют чаще всего в электрической промышленности. На его основе создают различные теплоизоляционные шланги и шланги для химической защиты, аккумуляторные банки, изоляционные втулки и прокладки, провода и кабели. Полихлорвинил также является отличной заменой вредному свинцу. Его нельзя применять в качестве высокочастотных цепей в виде диэлектрика. А все из-за того, что в этом случае показатели диэлектрических потерь будут высокими. Обладает высокой проводимостью.

В предыдущем параграфе мы узнали, что некоторые твёрдые тела (например, соль, кварц, металлы и другие) являются моно- или поликристаллами. Познакомимся теперь с аморфными телами . Они занимают промежуточное положение между кристаллами и жидкостями, поэтому их нельзя однозначно назвать твёрдыми.

Проделаем опыт. Нам понадобятся: кусок пластилина, стеариновая свеча и электрический обогреватель. Поставим пластилин и свечу на равных расстояниях от обогревателя. Вскоре часть свечи расплавится, часть останется в виде твёрдого тела, а пластилин «обмякнет». Некоторое время спустя весь стеарин расплавится, а пластилин постепенно «расплывётся», став совсем мягким.

Подобно стеарину, существуют и другие кристаллические вещества , которые при нагревании не размягчаются, и во время плавления всегда можно видеть как жидкость, так и ещё не расплавившуюся часть тела. Это, например, все металлы. Но существуют и аморфные вещества , которые при нагревании постепенно размягчаются, становятся всё более текучими, поэтому невозможно указать температуру, при которой тело превращается в жидкость (плавится).

Аморфные тела при любой температуре обладают текучестью . Подтвердим это опытом. В стеклянную воронку бросим кусок аморфного вещества и оставим в тёплой комнате (на рисунке – смола гудрон; из неё делают асфальт). Через несколько недель окажется, что смола приняла форму воронки и даже начала вытекать из неё наподобие «струи». То есть аморфное тело ведёт себя как очень густая и вязкая жидкость.

Строение аморфных тел. Исследования электронным микроскопом и рентгеновскими лучами показывают, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. В отличие от кристаллов, где существует дальний порядок в расположении частиц, в строении аморфных тел наблюдается только ближний порядок – некая упорядоченность расположения частиц сохраняется лишь вблизи каждой отдельной частицы (см. рисунок). Сверху изображено расположение частиц в кристаллическом кварце, снизу – в аморфной форме кварца. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO 2 .

Как и частицы любых тел, частицы аморфных тел непрерывно и беспорядочно колеблются и чаще, чем частицы кристаллов, могут перескакивать с места на место. Этому способствует то, что частицы аморфных тел расположены неодинаково плотно, местами создавая сравнительно большие промежутки. Однако это не то же самое, что «вакансии» в кристаллах (см. § 7-е).

Кристаллизация аморфных тел. С течением времени (недели, месяцы) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или мёд, оставленные в покое на несколько месяцев, становятся непрозрачными. В этом случае говорят, что мёд и леденцы «засахарились». Разломив такой леденец или зачерпнув такой мёд ложкой, мы увидим образовавшиеся кристаллики сахара, прежде существовавшего в аморфном состоянии.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества более устойчиво, чем аморфное. МКТ объясняет это так. Силы притяжения и отталкивания «соседок» перемещают частицы аморфного тела в такие положения, где потенциальная энергия минимальна (см. § 7-г). При этом возникает более упорядоченное расположение частиц, что и означает, что происходит самостоятельная кристаллизация.

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

Не все твёрдые тела - кристаллы. Существует множество аморфных тел.

У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи располагаются в некотором порядке. Но строгой направленности по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов в аморфных телах, нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO2, может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решётки из правильных шестиугольников. Аморфная структура кварца также имеет вид решётки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти и семиугольники.

В 1959 г. английский физик Д. Бернал провёл интересные опыты: он взял много маленьких пластилиновых шариков одинакового размера, обвалял их в меловой пудре и спрессовал в большой ком. В результате шарики деформировались в многогранники. Оказалось, что при этом образовывались преимущественно пятиугольные грани, а многогранники в среднем имели 13,3 грани. Так что какой-то порядок в аморфных веществах определённо есть.

К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др. В отличие от кристаллических веществ аморфные вещества изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Аморфные тела занимают промежуточное положение между кристаллическими твёрдыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Проследим за куском смолы, который лежит на гладкой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры тел у аморфных тел, в отличие от кристаллических, нет.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Главный признак аморфного (от греческого "аморфос" - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.