Холинергический синапс фармакология. Средства, действующие на холинергические синапсы

Мышечную и железистую клетку передается посредством специального структурного образования — синапса.

Синапс — структура, обеспечивающая проведение сигнала от одной к другой. Термин был введен английским физиологом Ч. Шеррингтоном в 1897 г.

Строение синапса

Синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 1).

Рис. 1. Строение синапса: 1 — микротрубочки; 2 — митохондрии; 3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана; 5 — постсинаптическая мембрана; 6 — рецепторы; 7 -синаптическая щель

Некоторые элементы синапсов могут иметь и другие названия. Например, синаптическая бляшка — это синапс между , концевая пластинка — постсинаптическая мембрана , моторная бляшка — пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая мембрана покрывает расширенное нервное окончание, которое представляет собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).

Постсинаптическая мембрана - утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.

Синаптическая щель представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к .

Рис. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Виды синапсов

Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По месту положения выделяют нервно-мышечные синапсы, нервно-железистые и нейро-нейрональные; последние, в свою очередь, делятся на аксо-аксональные, аксо-дендритические, аксо-соматические, дендро-соматические, дендро-дендротические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Таблица 1. Классификация и виды синапсов

Классификация синапсов и механизм передачи возбуждения

Синапсы классифицируют следующим образом:

  • по местоположению — периферические и центральные;
  • по характеру их действия — возбуждающие и тормозящие;
  • по способу передачи сигналов — химические, электрические, смешанные;
  • по медиатору, с помощью которого осуществляется передача, — холинергические, адренергические, серотонинергические и т.д.

В возбуждение передается с помощью медиаторов (посредников).

Медиаторы — молекулы химических веществ, которые обеспечивают передачу возбуждения в синапсах. Другими словами химические вещества, участвующие в передаче возбуждения или торможения от одной возбудимой клетки к другой.

Свойства медиаторов

  • Синтезируются в нейроне
  • Накапливаются в окончании клетки
  • Выделяются при появлении иона Са2+ в пресинаптическом окончании
  • Оказывают специфическое действие на постсинаптическую мембрану

По химическому строению медиаторы можно подразделить на амины (норадреналин, дофамин, серотонин), аминокислоты (глицин, гамма-аминомасляная кислота) и полипептиды (эндорфины, энкефалины). Ацетилхолин известен в основном как возбуждающий медиатор и содержится в различных отделах ЦНС. Медиатор находится в пузырьках пресинаптического утолщения (синаптической бляшки). Медиатор синтезируется в клетках нейрона и может ресинтезироваться из метаболитов его расщепления в синаптической щели.

При возбуждении терминалей аксона происходит деполяризация мембраны синаптической бляшки, вызывающая поступление ионов кальция из внеклеточной среды внутрь нервного окончания через кальциевые каналы. Ионы кальция стимулируют перемещение синаптических пузырьков к пресинаптической мембране, их слияние с ней и последующий выход медиатора в синаптическую щель. После проникновения в щель медиатор диффундирует к постсинаптической мембране, содержащей на своей поверхности рецепторы. Взаимодействие медиатора с рецепторами вызывает открытие натриевых каналов, что способствует деполяризации постсинаптической мембраны и возникновению возбуждающего постсинаптического потенциала. В нервно-мышечном синапсе этот потенциал называется потенциалом концевой пластинки. Между деполяризованной постсинаптической мембраной и соседними с ней поляризованными участками этой же мембраны возникают местные токи, которые деполяризуют мембрану до критического уровня с последующей генерацией потенциала действия. Потенциал действия распространяется по всем мембранам, например, мышечного волокна и вызывает его сокращение.

Выделившийся в синаптическую щель медиатор связывается с рецепторами постсинаптической мембраны и подвергается расщеплению соответствующим ферментом. Так, холинэстераза разрушает медиатор ацетилхолин. После этого некоторое количество продуктов расщепления медиатора поступает в синаптическую бляшку, где из них снова ресинтезируется ацетилхолин.

В организме имеются не только возбуждающие, но и тормозные синапсы. По механизму передачи возбуждения они сходны с синапсами возбуждающего действия. В тормозных синапсах медиатор (например, гамма-аминомасляная кислота) связывается с рецепторами постсинаптической мембраны и способствует открытию в ней . При этом активизируется проникновение этих ионов внутрь клетки и развивается гиперполяризация постсинаптической мембраны, обусловливающая возникновение тормозного постсинаптического потенциала.

В настоящее время выяснено, что один медиатор может связываться с несколькими различными рецепторами и индуцировать различные реакции.

Химические синапсы

Физиологические свойства химических синапсов

Синапсы с химической передачей возбуждения обладают определенными свойствами:

  • возбуждение проводится в одном направлении, так как медиатор выделяется только из синаптической бляшки и взаимодействует с рецепторами на постсинаптической мембраны;
  • распространение возбуждения через синапсы происходит медленнее, чем по нервному волокну (синаптическая задержка);
  • передача возбуждения осуществляется с помощью специфических медиаторов;
  • в синапсах изменяется ритм возбуждения;
  • синапсы способны утомляться;
  • синапсы обладают высокой чувствительностью к различным химическим веществам и гипоксии.

Одностороннее проведение сигнала. Сигнал передается только от пресинаптической мембраны к постсинаптической. Это вытекает из особенностей строения и свойств синаптических структур.

Замедленная передача сигнала. Обусловлена синаптической задержкой в передаче сигнала с одной клетки на другую. Задержка вызывается временными затратами на процессы выброса медиатора, его диффузии к постсинаптической мембране, связывания с рецепторами постсинаптической мембраны, деполяризации и преобразования постсинаптического потенциала в ПД (потенциал действия). Длительность синаптической задержки колеблется от 0,5 до 2 мс.

Способность к суммации эффекта от приходящих к синапсу сигналов. Такая суммация проявляется, если последующий сигнал приходит к синапсу через короткое время (1- 10 мс) после предыдущего. В таких случаях амплитуда ВПСП возрастает и на постсинаптическом нейроне может генерироваться большая частота ПД.

Трансформация ритма возбуждении. Частота нервных импульсов, приходящих к пресинаптической мембране, обычно не соответствует частоте ПД, генерируемых постсинаптическим нейроном. Исключение составляют синапсы, передающие возбуждение с нервного волокна на скелетную мышцу.

Низкая лабильность и высокая утомляемость синапсов. Синапсы могут проводить 50-100 нервных импульсов в секунду. Это в 5-10 раз меньше, чем максимальная частота ПД, которую могут воспроизводить нервные волокна при их электростимуляции. Если нервные волокна считаются практически неутомляемыми, то в синапсах утомление развивается весьма быстро. Это происходит из-за истощения запасов медиатора, энергетических ресурсов, развития стойкой деполяризации постсинаптической мембраны и т.д.

Высокая чувствительность синапсов к действию биологически активных веществ, лекарственных препаратов и ядов. Например, яд стрихнин блокирует функцию тормозных синапсов ЦНС, связываясь с рецепторами, чувствительными к медиатору глицину. Столбнячный токсин блокирует тормозные синапсы, нарушая выделение медиатора из пресинаптической терминали. В обоих случаях развиваются опасные для жизни организма явления. Примеры действия биологически активных веществ и ядов на передачу сигналов в нервно-мышечных синапсах рассмотрены выше.

Свойства облегчения и депрессии синоптической передачи. Облегчение синаптической передачи имеет место, когда нервные импульсы поступают к синапсу через короткое время (10-50 мс) друг за другом, т.е. достаточно часто. При этом в течение некоторого промежутка времени каждый последующий ПД, приходящий к пресинаптической мембране, вызывает увеличение содержания медиатора в синаптической щели, возрастание амплитуды ВПСП и увеличение эффективности синаптической передачи.

Одним из механизмов облегчения является накопление ионов Са 2 в пресинаптической терминали. Для удаления кальциевым насосом порции кальция, вошедшей в синаптическую терминаль при поступлении ПД, необходимо несколько десятков миллисекунд. Если в это время приходит новый потенциал действия, то новая порция кальция входит в терминаль и ее эффект на высвобождение нейромедиатора складывается с остаточным количеством кальция, которое кальциевый насос не успел удалить из нейроплазмы терминали.

Имеются и другие механизмы развития облегчения. Этот феномен в классических руководствах по физиологии называют также посттетанической потенциацией. Облегчение синаптической передачи имеет значение в функционировании механизмов памяти, для образования условных рефлексов и обучения. Облегчение передачи сигналов лежит в основе развития пластичности синапсов и улучшения их функций при частой активации.

Депрессия (угнетение) передачи сигналов в синапсах развивается при поступлении очень частых (для нервно-мышечного синапса более 100 Гц) нервных импульсов к пресинаптической мембране. В механизмах развития явления депрессии имеют значение истощение запасов медиатора в пресинаптической терминали, снижение чувствительности рецепторов постсинаптической мембраны к медиатору, развитие стойкой деполяризации постсинаптической мембраны, затрудняющих генерацию ПД на мембране постсинаптической клетки.

Электрические синапсы

Кроме синапсов с химической передачей возбуждения в организме есть синапсы с электрической передачей. Эти синапсы имеют очень узкую синаптическую щель и пониженное электрическое сопротивление между двумя мембранами. Благодаря наличию поперечных каналов между мембранами и низкому сопротивлению, электрический импульс легко проходит через мембраны. Электрические синапсы обычно характерны для однотипных клеток.

В результате воздействия раздражителя пресинаптический потенциал действия раздражает постсинаптическую мембрану, где возникает распространяющийся потенциал действия.

Характеризуются большей скоростью проведения возбуждения по сравнению с химическими синапсами и низкой чувствительностью к воздействию химических веществ.

Электрические синапсы бывают с одно- и двусторонней передачей возбуждения.

В организме встречаются и электрические тормозные синапсы. Тормозное влияние развивается за счет действия тока, который вызывает гиперполяризацию постсинаптической мембраны.

В смешанных синапсах может происходить передача возбуждения с помощью как электрических импульсов, так и медиаторов.

Холинергические синапсы представлены более широко.

Работа холинергического синапса.

Медиатор – ацетилхолин. Ацетилхолин синтезируется во всех нервных окончаниях(холинергических) из аминоспирта холина и предварительно активированного ацетата – ацилКоА под действием фермента – ацетилхолинэстеразы. Ацетилхолин синтезируется в везикулах нервных окончаний. Эти везикулы увеличиваются в размерах, подходя к пресинаптической мембране. Большие содержат готовый ацетилхолин.

Ацетилхолин, выделившийся в синаптическую щель, взаимодействует с холинорецепторами на постсинаптической мембране.

Рецепторы делятся на:

1.м – холинорецепторы(возбуждаются алкалоидом из мухомора – мускарином и блокируется алкалоидом атропином)

2.н – холинорецепторы(возбуждаются малыми дозами никотина и блокируются большими дозами никотина).

Н – холинорецепторы – на скелетной мускулатуре(Н м - холинорецепторы), в ганглиях(Н н - холинорецепторы). На исполнительных органах парасимпатики – М – холинорецепторы.

М – холинорецепторы делятся на 3 подтипа: М 1 , М 2 , М 3 .

М 1 – локализованы в ЦНС и их возбуждение – кратковременная память. В вегетативных ганглиях(модулирующая роль) париетальных клеток желудка.

М 2 – их возбуждение связано с торможением функции любого органа, на котором они расположены(в основном сердце).

М 3 – расположены в гладких мышцах и железах. Все эффекты, связанные с их возбуждением – связаны с усилением функции органов(но сфинктеры расслабляются). Железы усиливают секрецию.

Механизм функционирования М – рецепторов.

М 1 и М 3 – рецепторы через G q – белок связаны с фосфолипазой С, то есть при их возбуждении идет наработка инозитолтрифосфата и диацилглицерина, следовательно идет повышение концентрации свободного кальция, то есть повышается тонус мышц.

М 2 – связаны через G i – белок с аденилатциклазой или ионными каналами. Их возбуждение приведет к уменьшению активности аденилатциклазы, повышению проводимости, что приводит к выходу калия из клетки, то есть возникает гиперполяризация, и как следствие снижение функции.

Н – холинорецепторы не разделены на подтипы, а по локализации делятся на:

1.никотиновые мышечного типа(Н м). Находятся на скелетных мышцах

2.нейронального типа(Н н). Локализация: в ганглиях(как симпатики, так и парасимпатики) – эффект возбуждения – усиление проводимости; в мозговом слое надпочечников – эффект – усиление выделения адреналина; каротидный клубочек – возбуждение приводит к рефлекторной активации дыхания в ЦНС.

Механизм действия.

Н – рецепторы представляют собой натриевый ионный канал(5 субъединиц - 2α, β, γ, δ). Вещество, взаимодействующее с этим рецептором, взаимодействует с α – субъединицей, которые формируют натриевый канал. При его возбуждении входящий ток натрия, то есть идет деполяризация, следствием становится сокращение мышцы.


Второй этап работы синапса: после того как ацетилхолин провзаимодействовал с рецепторами, он подвергается действию фермента – ацетилхолинэстеразы(разрушается). Реакция очень быстрая.

Аминоспирт холин, который образовался в результате разрушения ацетилхолина в синаптической щели, подвергается обратному захвату в нервное окончание(около 50%) и вновь идет на синтез ацетилхолина.

Классификация лекарств.

1.вещества, усиливающие работу холинергического синапса

· прямого типа действия(М –Н – холиномиметики – ацетилхолин, карбохолин; М – миметики – мускарин, пилокарпин; Н – миметики – никотин, цититон, лобелин)

· непрямого типа действия:

ü антихолинэстеразные(блокируют ацетилхолинэстеразу). Делятся на вещества обратимого действия – прозерин, физостигмин, галантамин и необратимого действия – армин.

ü Вещества, усиливающие выделение ацетилхолина из нервных окончаний – аминопиридин, цисаприд(усиливает выделение ацетилхолина в кишечнике)

2.вещества, ослабляющие проведение возбуждения в холинергическом синапсе.

М – Н – холиномиметики.

Как лекарственные вещества почти не применяются, так как эффект очень краток.

Карбохолин.

Эфир карбаминовой кислоты. Действует более продолжительно(не разрушается ацетилхолинэстеразой). Используется при послеоперационной атонии гладкомышечных органов и редко в глаз для лечения глаукомы.

Рассмотрим две группы одновременно М – Н – холиномиметиков и М – холиномиметиков, так как их эффекты одинаковы(никотиновые эффекты затушевываются более сильным возбуждением мускариновых рецепторов). Выявить у лекарственного средства наличие никотинового препарата можно только, если предварительно заблокировать атропином мускариновые рецепторы.

СТРОЕНИЕ ХОЛИНЕРГИЧЕСКОГО И АДРЕНЕРГИЧЕСКОГО СИНАПСА. МЕДИАТОРЫ. РЕЦЕПТОРЫ.

Наименование параметра Значение
Тема статьи: СТРОЕНИЕ ХОЛИНЕРГИЧЕСКОГО И АДРЕНЕРГИЧЕСКОГО СИНАПСА. МЕДИАТОРЫ. РЕЦЕПТОРЫ.
Рубрика (тематическая категория) Медицина

Синапс

СИНАПС - это место контакта между окончаниями нервного волокна с одной стороны и участком нервного волокна, нервной клетки (пример ганглий) или участком мембраны исполнительного органа (пример: слюнная желœеза).

В синапсе различают:

1. Пресинаптическое окончание - в данном месте происходит синтез и депонирование медиатора в специальных везикулах (гранулах).

2. Синаптическая щель - в химическом синапсе это пространство между пресинаптическим окончанием и постсинаптической мембраной, через которую проходит медиатор.

3. Постсинаптическая мембрана - это участок мембраны клетки, на которой расположен рецептор и с которым взаимодействует медиатор.

Медиатор

МЕДИАТОР - химическое вещество, посредством которого происходит передача импульса от пресинаптического окончания к постсинаптической мембране.

Рецептор

РЕЦЕПТОР - это многокомпонентный комплекс, состоящий из белков, липидов и углеводов, расположенный на мембране клетки.

При взаимодействии медиатора с рецептором происходит деполяризация постсинаптической мембраны, образуется импульс, и в результате меняется биохимическая активность клетки, а в последующем органа или системы организма. Рецептор также может находиться и на пресинаптической мембране и регулировать выброс медиатора в синаптическую щель.

ПРИНЦИП функционирования синапса

1. Импульс по мембране нервного волокна приходит к пресинаптическому окончанию и вызывает деполяризацию мембраны, с последующим изменением биохимизма внутри пресинаптического окончания.

2. Выброс медиатора в синаптическую щель. Обычно выбрасывается определœенное количество "пул" медиатора.

3. Взаимодействие медиатора с рецептором постсинаптической мембраны.

4. Активация (деполяризация мембраны и образование импульса) рецептора и изменение функций воспринимающей клетки.

5. Инактивация медиатора ферментом, который находится в синаптической щели или на постсинаптической мембране.

6. Обратный захват медиатора или его метаболитов пресинаптическим окончанием.

7. Синтез и депонирование медиатора в пресинаптическом окончании синапса.

СТРОЕНИЕ ХОЛИНЕРГИЧЕСКОГО И АДРЕНЕРГИЧЕСКОГО СИНАПСА. МЕДИАТОРЫ. РЕЦЕПТОРЫ. - понятие и виды. Классификация и особенности категории "СТРОЕНИЕ ХОЛИНЕРГИЧЕСКОГО И АДРЕНЕРГИЧЕСКОГО СИНАПСА. МЕДИАТОРЫ. РЕЦЕПТОРЫ." 2017, 2018.

И ацетилкоэнзима А (митохондриального происхождения) при участии цитоплазматического фермента холинацетилазы (холин-ацетилтрансферазы). Депонируется ацетилхолин в синаптических пузырьках (везикулах). В каждом из них находится несколько тысяч молекул ацетилхолина. Нервные импульсы вызывают высвобождение ацетилхолина в синаптическую щель, после чего он взаимодействует с холинорецепторами.

По имеющимся данным, холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (α, α, β, γ, δ), окружающих ионный (натриевый) канал и проходящих через всю толщу липидной мембраны. Две молекулы ацетилхолина взаимодействуют с двумя α-субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны.

Виды холинорецепторов

Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых

  • мускариночувствительных холинорецепторов - м-холинорецепторы (мускарин - алкалоид из ряда ядовитых грибов, например мухоморов) и
  • никотиночувствительных холинорецепторов - н-холинорецепторы (никотин - алкалоид из листьев табака).

М-холинорецепторы расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных холинергических (парасимпатических) волокон. Кроме того, они имеются на нейронах вегетативных ганглиев и в ЦНС - в коре головного мозга, ретикулярной формации). Установлена гетерогенность м-холинорецепторов разной локализации, что проявляется в их неодинаковой чувствительности к фармакологическим веществам.

Выделяют следующие виды м-холинорецепторов:

  • м 1 -холинорецепторы в ЦНС и в вегетативных ганглиях (однако последние локализуются вне синапсов);
  • м 2 -холинорецепторы - основной подтип м-холинорецепторов в сердце; некоторые пресинаптические м 2 -холинорецепторы снижают высвобождение ацетилхолина;
  • м 3 -холинорецепторы - в гладких мышцах, в большинстве экзокринных желез;
  • м 4 -холинорецепторы - в сердце, стенке легочных альвеол, ЦНС;
  • м 5 -холинорецепторы - в ЦНС, в слюнных железах, радужной оболочке, в мононуклеарных клетках крови.

Воздействие на холинорецепторы

Основные эффекты известных фармакологических веществ, влияющих на м-холинорецепторы, связаны с их взаимодействием с постсинаптическими м 2 - и м 3 -холинорецепторами.

Н-холинорецепторы находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (в симпатических и парасимпатических ганглиях), мозговом слое надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц и ЦНС (в нейрогипофизе, клетках Реншоу и др.). Чувствительность к веществам разных н-холинорецепторов неодинакова. Так, н-холинорецепторы вегетативных ганглиев (н-холинорецепторы нейронального типа) существенно отличаются от н-холинорецепторов скелетных мышц (н-холинорецепторы мышечного типа). Этим объясняется возможность избирательного блока ганглиев (ганглиоблокирующими препаратами) или нервно-мышечной передачи (курареподобными препаратами)

В регуляции высвобождения ацетилхолина в нейроэффекторных синапсах принимают участие пресинаптические холино- и адренорецепторы. Их возбуждение угнетает высвобождение ацетилхолина.

Взаимодействуя с н-холинорецепторами и изменяя их конформацию, ацетилхолин повышает проницаемость постсинаптической мембраны. При возбуждающем эффекте ацетилхолина ионы натрия проникают внутрь клетки, что ведет к деполяризации постсинаптической мембраны. Первоначально это проявляется локальным синаптическим потенциалом, который, достигнув определенной величины, генерирует потенциал действия. Затем местное возбуждение, ограниченное синаптической областью, распространяется по всей мембране клетки. При стимуляции м-холинорецепторов в передаче сигнала важную роль играют G-белки и вторичные мессенджеры (циклический аденозинмонофосфат – цАМФ; 1,2-диацилглицерол; инозитол(1,4,5)трифосфат).

Действие ацетилхолина очень кратковременно, так как он быстро гидролизуется ферментом ацетилхолинэстеразой (например, в нервно-мышечных синапсах или, как в вегетативных ганглиях, диффундирует из синаптической щели). Холин , образующийся при гидролизе ацетилхолина, в значительном количестве (50%) захватывается пресинаптическими окончаниями, транспортируется в цитоплазму, где вновь используется для биосинтеза ацетилхолина.

Вещества, воздействующие на холинергические синапсы

Химические (в том числе фармакологические) вещества могут воздействовать на разные процессы, имеющие отношение к синаптической передаче:

  • синтез ацетилхолина;
  • высвобождение медиатора (например, карбахолин усиливает выделение ацетилхолина на уровне пресинаптических окончаний, а также ботулиновый токсин, препятствующий высвобождению медиатора);
  • взаимодействие ацетилхолина с холинорецепторами;
  • энзиматический гидролиз ацетилхолина;
  • захват пресинаптическими окончаниями холина, образующегося при гидролизе ацетилхолина (например, гемихолиний, который угнетает нейрональный захват - транспорт холина через пресинаптическую мембрану).

Вещества, влияющие на холинорецепторы, могут оказывать стимулирующий (холиномиметический) или угнетающий (холиноблокирующий) эффект. Основой классификации таких средств является направленность их действия на определенные холинорецепторы. Исходя из этого принципа, препараты, влияющие на холинергические синапсы, могут быть систематизированы следующим образом:

  • Средства, влияющие на м- и н-холинорецепторы
    • М,н-холиномиметики
    • М,н-холиноблокаторы
  • Антихолинэстеразные средства
    • физостигмина салицилат
    • галантамина гидробромид
  • Средства, влияющие на м-холинорецепторы
    • М-холиномиметики (мускариномиметические средства)
      • пилокарпина гидрохлорид
      • бетанехол
    • М-холиноблокаторы (антихолинергические, атропиноподобные средства)
      • атропина сульфат
      • платифиллина гидротартрат
      • ипратропия бромид
      • скополамина гидробромид
      • тропикамид
      • гоматропин
      • дицикловерин
      • дарифенацин
      • пирензепин (гастрозепин)
      • прифиний бромид
  • Средства, влияющие на н-холинорецепторы
    • Н-холиномиметики (никотиномиметические средства)
      • лобелина гидрохлорид
      • никотин
      • анабазина гидрохлорид
      • гамибазин
    • Блокаторы н-холинорецепторов или связанных с ними ионных каналов
      • Ганглиоблокирующие средства
        • трепирия йодид
        • пахикарпин
      • Курареподобные средства (миорелаксанты периферического действия)
        • тубокурарина хлорид
        • панкурония бромид
        • пипекурония бромид

Напишите отзыв о статье "Холинергические синапсы"

Литература

  • Харкевич Д.А. Фармакология. М.: ГЭОТАР-МЕД, 2004

См.также

Отрывок, характеризующий Холинергические синапсы

– Ты забыл, что для меня не важен язык, Север. Я чувствую и вижу его – улыбнулась я.
– Прости, ведающая... Я запамятовал – кто ты. Желаешь ли узреть то, что дано только знающим, Изидора? У тебя не будет другой возможности, ты больше не вернёшься сюда.
Я лишь кивнула, стараясь удержать, готовые политься по щекам злые, горькие слёзы. Надежда быть с ними, получить их сильную, дружескую поддержку умирала, даже не успев хорошенько проснуться. Я оставалась одна. Так и не узнав чего-то очень для меня важного... И почти беззащитная, против сильного и страшного человека, с грозным именем – Караффа...
Но решение было принято, и я не собиралась отступать. Иначе, чего же стоила наша Жизнь, если пришлось бы жить, предавая себя? Неожиданно я совершенно успокоилась – всё наконец-то стало на свои места, надеяться больше было не на что. Я могла рассчитывать только на саму себя. И именно из этого стоило исходить. А какой уж будет конец – об этом я заставила себя больше не думать.
Мы двинулись по высокому каменному коридору, который, всё расширяясь, уходил вглубь. В пещере было так же светло и приятно, и лишь запах весенних трав становился намного сильнее, по мере того, как мы проходили дальше. Неожиданно прямо перед нами засияла светящаяся золотая «стена», на которой сверкала одна-единственная большая руна... Я тут же поняла – это была защита от «непосвящённых». Она была похожей на плотный мерцающий занавес, сотворённый из какой-то, невиданной мною, блистающей золотом материи, через который без посторонней помощи мне, вероятнее всего, не удалось бы пройти. Протянув руку, Север легко коснулся её ладонью, и золотая «стена» тут же исчезла, открывая проход в удивительное помещение.... У меня сразу же появилось яркое чувство чего-то «чужого», будто что-то говорило мне, что это был не совсем тот привычный мне мир, в котором я всегда жила... Но через мгновение странная «чужеродность» куда-то исчезла, и опять всё стало привычно и хорошо. Прощупывающее ощущение чьего-то невидимого за нами наблюдения усилилось. Но оно, опять же, не было враждебным, а скорее похожим на тёплое прикосновение доброго старого друга, когда-то давно потерянного и теперь вдруг заново обретённого... В дальнем углу помещения сверкал переливаясь радужными брызгами маленький природный фонтан. Вода в нём была столь прозрачной, что видна была лишь по радужным отблескам света, блестящим на дрожащих зеркальных каплях. Глядя на этот чудо-родник, неожиданно для себя я вдруг почувствовала жгучую жажду. И не успев спросить Севера, могу ли попить, тут же получила ответ:
– Конечно же, Изидора, попробуй! Это вода Жизни, мы все пьём её, когда не хватает сил, когда ноша становится неподъёмной. Попробуй!
Я нагнулась, чтобы зачерпнуть ладонями чудотворной воды, и почувствовала невероятное облегчение, даже ещё не успев коснуться её!.. Казалось, все мои беды, все горечи куда-то вдруг отступили, я чувствовала себя непривычно успокоенной и счастливой... Это было невероятно – я ведь не успела даже попробовать!.. Растерянно обернулась к Северу – он улыбался. Видимо, такие же ощущения испытывали все, кто прикасался к данному чуду впервые. Я зачерпнула воду ладонями – она сверкала маленькими бриллиантами, как утренняя роса на освещённой солнцем траве... Осторожно, стараясь не пролить драгоценные капли, я сделала малюсенький глоток – по всему телу разлилась неповторимая лёгкость!.. Будто взмахом волшебной палочки кто-то, сжалившись, сбросил мне целых пятнадцать лет! Я чувствовала себя лёгкой, точно птица, парящая высоко в небе... Голова стала чистой и ясной, будто я только что родилась на свет.
– Что это?!. – удивлённо прошептала я.
– Я же тебе сказал, – улыбнулся Север. – Живая Вода... Она помогает впитывать знания, снимает усталость, возвращает свет. Её пьют все, кто находится здесь. Она была здесь всегда, насколько я помню.
Он подтолкнул меня дальше. И тут я вдруг поняла, что мне казалось таким странным... Комната не кончалась!.. С виду она казалась маленькой, но продолжала «удлиняться» по мере нашего по ней продвижения!.. Это было невероятно! Я опять взглянула на Севера, но он лишь кивнул, будто говоря: «Не удивляйся ничему, всё нормально». И я перестала удивляться... Прямо из стены помещения «вышел» человек... Вздрогнув от неожиданности, я тут же постаралась собраться, чтобы не показывать удивления, так как для всех остальных, здесь живущих, это видимо было совершенно привычно. Человек подошёл прямо к нам и низким звучным голосом произнёс:
– Здравой будь, Изидора! Я – Волхв Истень. Знаю, тяжко тебе... Но ты сама избрала путь. Пойдём со мной – я покажу тебе, что ты потеряла.
Мы двинулись дальше. Я следовала за дивным человеком, от которого исходила невероятная сила, и горестно думала, как же всё было бы легко и просто, если бы он захотел помочь! Но, к сожалению, он тоже не хотел... Я шла, глубоко задумавшись, совершенно не заметив, как очутилась в удивительном пространстве, сплошь заполненном узкими полками, на которых покоилось невероятное количество необычных золотых пластин и очень старых «свёртков», похожих на старинные манускрипты, хранившиеся в доме моего отца, с разницей лишь в том, что, хранящиеся здесь, были сделаны на каком-то тончайшем незнакомом материале, которого ранее я никогда и нигде не видывала. Пластины и свитки были разными – маленькими и очень большими, короткими и длиннющими, в целый человеческий рост. И в этой странной комнате их было великое множество...
– Это и есть ЗНАНИЕ, Изидора. Вернее, очень малая его часть. Можешь впитать, если желаешь. Оно не повредит, а может даже поможет тебе в твоём искании. Попробуй, милая...
Истень ласково улыбался, и мне вдруг показалось, что я знала его всегда. От него исходило чудесное тепло и покой, которых мне так не хватало все эти жуткие дни, борясь с Караффой. Он видимо всё это прекрасно чувствовал, так как смотрел на меня с глубокой печалью, будто знал, какая злая судьба ждёт меня за стенами Мэтэоры. И он заранее оплакивал меня.... Я подошла к одной из бесконечных полок, до верха «забитой» полукруглыми золотыми пластинами, чтобы посмотреть, как предложил Истень... Но не успела даже приблизить руку, как на меня буквально обрушился шквал ошеломляющих, дивных видений!!! Потрясающие картины, не похожие ни на что, когда-либо виденное, проносились в моём измученном мозге, с невероятной быстротой заменяя друг друга... Некоторые из них почему-то оставались, а некоторые исчезали, тут же принося за собой новые, которые я тоже почти не успевала рассмотреть. Что это было?!.. Жизнь каких-то давно умерших людей? Наших Великих предков? Видения менялись, проносясь с сумасшедшей скоростью. Поток не кончался, унося меня в какие-то удивительные страны и миры, не давая очнуться. Вдруг одно из них вспыхнуло ярче остальных, и мне открылся потрясающий город... он был воздушным и прозрачным, будто созданным из Белого Света.

Синапсы(и соответственно нервные волокна), в которых передача импульсов осуществляется с помощью ацетилхолина, получили название холинергических.

Холинергический синапс состоит из:

пресинаптического окончания - синаптической бляшки, в везикулах которой содержится ацетилхолин

синаптической щели, которая содержит фермент - ацетилхолинэстреразу

постсинаптической мембраны, на которой расположены м- или н- холинорецепторы -

Состояние постсинаптической мембраны меняется следующим образом:
1 стадия - поляризации, когда мембрана полупроницаема и готова воспринимать возбуждение
2 стадия - деполяризации, когда мембрана перезаряжается и органы возбуждаются
3 стадия - реполяризации, когда уменьшается количество ацетилхолина за счет его разрушения ацетилхолинэстреразой и мембрана вновь становится непроницаемой для ионов.

Этапы медиации.

1. Синтез и депонирование медиатора. Ацетилхолин синтезируется в пресинаптических окончаниях из ацетил-КоА и холина. В цитоплазме пресинаптического окончания содержится большое количество митохондрий, здесь путем окислительного декарбоксилирования a-кетокислот синтезируется ацетил-КоА. Холин поступает в клетку извне благодаря специальному трансмембранному переносчику. Транспорт холина в нейрон сопряжен с переносом ионов натрия и может быть блокирован гемихолином.

Таблица 2. Сравнительная характеристика холинорецепторов клетки.

Тип Агонист Антагонист Локализация Функция Механизм
Н М PTMA Никотин d-тубокурарин a-бунгаротоксин Скелетные мышцы Деполяризация концевой пластинки, сокращение мышцы Открытие Na + -канала
Н Н DMPP Эпибатидин Никотин Триметафан Вегетативные ганглии Мозговое вещество надпочечников Каротидные клубочки ЦНС Деполяризация и возбуждение постганглионарного нейрона Секреция адреналина и норадреналина Рефлекторная стимуляция дыхательного центра Контроль психических и моторных функций, когнитивные процессы. Открытие Na + , K + и Са 2+ -каналов
М 1 Мускарин Оксотреморин Атропин Пирензепин Вегетативные ганглии (пресинаптически) ЦНС Деполяризация, усиление секреции медиатора (поздний постсинаптический потенциал) Контроль психических и моторных функций, когнитивные процессы. Активация фосфолипазы С через G q белок и синтез IP 3 (выход Са 2+ из депо), DAG (активация Са 2+ -каналов, протеинкиназы С).
М 2 Мускарин Метахолин Атропин Метоктрамин Трипитрамин Миокард САУ: снижение автоматизма; АВУ: снижение проводимости; Рабочий миокард: незначительное снижение сократимости. Через a-единицу G i -белка торможение аденилатциклазы (”цАМФ). Через bg-единицы G i -белка активация К + -каналов и блокада L-типа Са 2+ -каналов.
М 3 Бетанехол Атропин Дарифенацин HHSDP Гладкие мышцы Железы Эндотелий сосудов (внесинаптически) Сокращение, “ тонуса Повышение секреции Секреция NO и дилятация сосуда Подобен М 1
М 4 ? ? Сердце Альвеолы ЦНС ? Подобен М 2
М 5 ? ? Слюнные железы Радужка глаза Моноциты ЦНС ? Подобен М 1

Примечание: a-бунгаротоксин – яд тайваньской гадюки (Bungaris multicintus) и кобры (Naja naja).



PTMA – фенилтриметиламмоний

DMPP – диметилфенилпиперазин

HHSDP – гексагидросиладифенол

АВУ – атриовентрикулярный узел

САУ – синоаурикулярный узел

Синтез ацетилхолина проводит особый фермент холинацетилтрансфераза, путем ацетилирования холина. Образовавшийся ацетилхолин поступает в везикулы при помощи антипортера переносчика в обмен на протон. Работа этого переносчика может быть заблокирована векзамиколом. Обычно в каждой везикуле содержится от 1.000 до 50.000 молеукл ацетилхолина, а общее число везикул в пресинаптическом окончании достигает 300.000.

2. Выделение медиатора. Во время фазы покоя, через пресинаптическую мембрану выделяются единичные кванты медиатора (изливается содержимое 1 везикулы). Одна молекула ацетилхолина способна вызвать изменение потенциала мембраны всего на 0,0003 мВ, а то количество, которое содержится в 1 везикуле – на 0,3-3,0 мВ. Такие миниатюрные сдвиги не вызывают развития биологического ответа, но поддерживают физиологическую реактивность, тонус ткани-мишени.

Активация синапса происходит в тот момент, когда на пресинаптическую мембрану приходит потенциал действия. Под влиянием потенциала мембрана деполяризуется и это вызывает открытие воротного механизма медленных кальциевых каналов. По этим каналам ионы Са2+ поступают в пресинаптическое окончание и взаимодействуют с особым белком в мембране везикул – синаптобревином (VAMP). Синаптобревин переходит в активированное состояние и начинает выполнять роль своеобразного «крючка» или якоря. Этим якорем везикулы фиксируются к пресинаптической мембране в тех местах, где лежат особые белки – SNAP-25 и синтаксин-1. В последующем эти белки инициируют слияние мембраны везикул с мембраной аксона и выталкивают медиатор в синаптическую щель подобно поршню насоса. При прохождении потенциала действия через пресинаптическую мембрану одновременно опустошаются 2.000-3.000 везикул.



Схема 4. Передача сигнала в холинергическом синапсе. ХАТ – холинацетилтрансфераза, В1 – тиамин, Ach – ацетилхолин, М1-Хр – М1-холинорецепторы, АХЭ – ацетилхолинэстераза, ФлС – фосфолипаза С, PIP2 – фосфатидилинозитол бифосфат, IP3 – инозитол трифосфат, DAG – диацилглицерол, PkC – протеинкиназа С, Б – белок-фермент, Б-РО4 – фосфорилированная форма белка-фермента.

Процесс выделения медиатора может быть нарушен под влиянием ботулотоксина (токсин бактерий Clostridium botulinum). Ботулотоксин вызывает протеолиз белков, участвующих в выделении медиатора (SNAP-25, синтаксин, синаптобревин). a-латротоксин – яд паука «черная вдова» связывается с белком SNAP-25 (нейрексином) и вызывает спонтанный массивный экзоцитоз ацетилхолина.

3. Развитие биологического ответа. В синаптической щели путем диффузии ацетилхолин поступает к постсинаптической мембране, где активирует холинорецепторы. При взаимодействии с Н-холинорецепторами происходит открытие натриевых каналов и на постсинаптической мембране генерируется потенциал действия.

В том случае, если ацетилхолин активирует М-холинорецепторы, сигнал передается через систему G-белков на фосфолипазу С, ионные каналы К+ и Са2+ и все это приводит в конечном итоге к изменению поляризации мембраны, процессов фосфорилирования внутриклеточных белков.

Помимо постсинаптической мембраны ацетилхолин может воздействовать на холинорецепторы пресинаптической мембраны (М1 и М2). При активации ацетилхолином М1-пресинаптического рецептора выделение медиатора усиливается (положительная обратная связь). Роль М2-холинорецепторов на пресинапетической мембране недостаточно ясна, полагают, что они могут тормозить секрецию медиатора.

Развитие биологического ответа можно вызвать при введении лекарственных веществ, которые стимулируют холинорецепторы или предотвратить, если ввести средства, блокирующие эти рецептры. Повлиять на развитие эффекта можно и не затрагивая рецепторы, а воздействуя лишь на пострецепторные механизмы:

· Токсин коклюшной палочки может активировать Gi-белок и снижать активность аденилатциклазы на затрагивая М-холинорецептор;

· Токсин холерного вибриона может активировать Gs-белок и повышать активность аденилатциклазы;

· Дитерпен форсколин из растения Coleus forskohlii способен непосредственно активировать аденилатциклазу в обход рецепторов и G-белков.

4. Окончание действия медиатора. Время существования ацетилхолина в синаптической щели составляет всего 1 мС, после чего он подвергается гидролизу до холина и остатка уксусной кислоты. Уксусная кислота быстро утилизируется в цикле Кребса. Холин в 1.000-10.000 раз менее активен, чем ацетилхолин, 50% его молекул подвергаются обратному захвату в аксон для ресинтеза ацетилхолина, остальная часть молекул включается в состав фосфолипидов.

Гидролиз ацетилхолина осуществляет особый фермент – холинэстераза. В настоящее время известно 2 его изоформы:

· Ацетилхолинэстераза (AChE) или истинная холинэстераза – осуществляет высокоспецифичный гидролиз ацетилхолина и локализуется на постсинаптической мембране холинергических синапсов.

· Бутирилхолинэстераза (ButChE) или псевдохолинэстераза – осуществляет низкоспецифичный гидролиз эфиров. Локализуется в плазме крови и перисинаптическом пространстве.

Типы холинорецепторов.

Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых мускариночувствительных и никотиночувствительных холинорецепторов1 (соответственно м-

холинорецепторы и н-холинорецепторы). М-холинорецепторы расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных холинергических (парасимпатических) волокон. Выделяют м1- холинорецепторы (в вегетативных ганглиях и в ЦНС), м2-холинорецепторы (основной подтип м- холинорецепторов в сердце)3 и м3-холинорецепторы (в гладких мышцах, большинстве экзокринных желез). Н-холинорецепторы находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон (в симпатических и парасимпатических ганглиях), мозговом слое надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц и

ЦНС (в нейрогипофизе, клетках Реншоу и др.).