К ингибиторам бета лактамаз относятся. Чем характеризуются антибиотики бета лактамного ряда? Антимикробное действие и проявление резистентности

Антибиотики – группа препаратов, обладающих этиотропным механизмом действия. Иначе говоря, эти лекарственные средства влияют непосредственно на причину заболевания (в данном случае на микроорганизм-возбудитель) и делают это двумя путями: уничтожают бактерии (бактерицидные препараты – пенициллины, цефалоспорины) или препятствуют их размножение (бактериостатические – тетрациклины, сульфаниламиды). Существует огромное количество лекарственных средств, которые являются антибиотиками, но самая большая группа среди них – это бета-лактамы. Именно о них и пойдет речь в данной статье.

Классификация антибактериальных средств

По механизму действия эти препараты делят на шесть основных групп:

  • Антибиотики, нарушающие синтез компонентов клеточных мембран: пенициллины, цефалоспорины и др
  • Лекарственные средства, препятствующих нормальному функционированию клеточной стенки: полиени, полимиксины.
  • Препараты, подавляющие синтез белков: макролиды, тетрациклины, аминогликозиды и др
  • Подавляют синтез РНК на этапе действия РНК-полимеразы: рифампицини, сульфаниламиды.
  • Подавляют синтез РНК на этапе действия ДНК-полимеразы: актиномицини и др.
  • Блокаторы синтеза ДНК: антрациклини, нитрофураны и др.
  • Однако эта классификация не очень удобная. В клинической практике принято следующее разделение антибактериальных препаратов:

  • Пенициллины.
  • Цефалоспорины.
  • Макролиды.
  • Аминогликозиды.
  • Полимиксины и полиени.
  • Тетрациклины.
  • Сульфаниламиды.
  • Производные аминохинолонов.
  • Нитрофураны.
  • Фторхинолоны.
  • Бета-лактамные антибиотики. Строение и механизм действия

    Это группа препаратов с бактерицидным эффектом и достаточно широким перечнем показаний к применению. К бета-лактамным антибиотикам относятся пенициллины, цефалоспорины, карбапенемов, монобактамы. Все они характеризуются высокой эффективностью и сравнительно небольшой токсичностью, что делает их препаратами, наиболее часто назначаются для лечения многих заболеваний.
    Механизм действия бета-лактамных антибиотиков обусловлен их структурой. Лишние подробности тут ни к чему, стоит упомянуть лишь о самом важном элементе, который и дал название всей группе препаратов. Входит в состав их молекул бета-лактамное кольцо и обеспечивает выраженный бактерицидный эффект, который проявляется блокированием синтеза элементов клеточной стенки возбудителя. Однако многие бактерии умеют вырабатывать специальный фермент, который нарушает строение кольца, тем самым лишая антибиотик его главного оружия. Именно поэтому использование в лечении препаратов, не имеющих защиты от бета-лактамаз, неэффективно. Сейчас все большее распространение получают антибиотики бета-лактамной группы, защищены от действия бактериального фермента. В их состав включают вещества, которые блокируют синтез бета-лактамаз, например, клавулоновую кислоту. Именно так создаются защищенные бета-лактамные антибиотики ("Амоксиклав"). К другим ингибиторам бактериального фермента относятся "Сульбактам" и "Тазобактам".

    Лекарства из группы пенициллинов: историческая справка

    Препараты этого ряда были первыми антибиотиками, лечебный эффект которых стал известен людям. Долгое время они широко применялись для лечения различных заболеваний и в первые годы применения были едва ли не панацеей. Однако очень скоро стало ясно, что эффективность их постепенно падает, так как эволюция мира бактерий не стоит на месте. Микроорганизмы умеют быстро приспосабливаться к различным сложным условиям существования, порождая на свет поколение устойчивых к антибиотикам бактерий.
    Распространенность пенициллинам привела к быстрому росту нечувствительных к ним штаммов микробов, поэтому в чистом виде препараты данной группы сейчас малоэффективны и почти не применяются. Их лучше всего использовать в комбинации с веществами, усиливают их бактерицидный эффект, а также подавляют защитные механизмы бактерий.

    Препараты пенициллинового ряда

    Это бета-лактамные антибиотики, классификация которых достаточно обширна:

  • Природные пенициллины (например, "Бензилпенициллин").
  • Антистафилококковие ("Оксациллин").
  • Пенициллины расширенного спектра действия ("Ампициллин", "Амоксициллин").
  • Антисинегнойние ("Азлоциллин").
  • Защищенные пенициллины (комбинированные с клавулоновой кислотой, "Сульбактамом", "Тазобактамом").
  • Препараты, включающие в свой состав несколько антибиотиков пенициллинового ряда.
  • Краткий обзор лекарственных средств, относящихся к группе пенициллинов

    Природные пенициллины способны с успехом подавлять активность как грамположительных, так и грамотрицательных микроорганизмов. Из последних наиболее чувствительны к данной группе бета-лактамных антибиотиков стрептококки и возбудитель менингита. Другие бактерии к настоящему времени приобрели механизмы защиты. Природные пенициллины эффективны и против анаэробов: клостридий, пептококков, пептострептококков и др Эти препараты наименее токсичны и имеют сравнительно небольшим количеством нежелательных эффектов, перечень которых сводится в основном к аллергическим проявлениям, хотя при передозировке возможно развитие судорожного синдрома, появление симптомов отравления со стороны органов пищеварительной системы.
    С антистафилококковых пенициллинов наибольшее значение имеет такой бета-лактамный антибиотик, как "Оксациллин". Это препарат узкого применения, так как он предназначен преимущественно для борьбы с золотистым стафилококком. Именно против этого возбудителя (в том числе и пенициллинрезистентних штаммов) "Оксациллин" наиболее эффективен. Побочное действие сходно с таковым у других представителей этой группы лекарств. Пенициллины расширенного спектра действия кроме грамположительной, грамотрицательной флоры и анаэробов активны также против возбудителей кишечных инфекций. Побочные эффекты не отличаются от перечисленных выше, хотя для этих препаратов характерно более высокая вероятность расстройств со стороны пищеварительной системы. Бета-лактамный антибиотик "Азлоциллин" (представитель четвертой группы пенициллинов) предназначен для борьбы с синегнойной палочкой. Однако в настоящее время у данного возбудителя проявилась резистентность к препаратам этого ряда, что делает их использование не столь эффективным.
    О защищенных пенициллинах уже упоминалось выше. Благодаря тому что данные лекарственные средства включают в свой состав вещества, подавляющие бета-лактамазу бактерий, они являются более эффективными для лечения многих заболеваний. Последняя группа – это комбинация нескольких представителей пенициллинового ряда, взаимно усиливают действие друг друга.

    Четыре поколения истребителей бактерий

    Бета-лактамными антибиотиками являются цефалоспорины. Эти препараты, подобно пенициллинам, отличаются широтой спектра действия и незначительностью побочных эффектов. Существует четыре группы (поколения) цефалоспоринов:

  • Наиболее яркие представители первого поколения – "Цефазолин" и "Цефалексин". Они предназначены преимущественно для борьбы со стафилококками, стрептококками, менингококками и гонококками, а также некоторыми грамотрицательными микроорганизмами.
  • Второе поколение – это бета-лактамный антибиотик "Цефуроксим". Его зона ответственности включает в основном грамотрицательную микрофлору.
  • "Цефотаксим", "Цефтазидим" – представители третьей группы этой классификации. Они очень эффективны против энтеробактерий, а также способны уничтожать нозокомиальную флору (госпитальные штаммы микроорганизмов).
  • Основной препарат четвертого поколения – "Цефепим". Он обладает всеми достоинствами вышеуказанных лекарственных средств, кроме того, чрезвычайно устойчив к действию бета-лактамаз бактерий и обладает активностью против синегнойной палочки.
  • Цефалоспоринам и бета-лактамным антибиотикам в целом характерен ярко выраженный бактерицидный эффект.
    Из нежелательных реакций на введение данных препаратов наибольшего внимания заслуживают различные аллергические реакции (от незначительных высыпаний до жизнеугрожающих состояний, таких как анафилактический шок), в некоторых случаях возможны расстройства со стороны органов пищеварения.

    Резервное средство

    "Имипенем" – бета-лактамный антибиотик, относящийся к группе карбапенемов. Он, а также не менее известный "Меропенем", по эффективности воздействия на резистентную к другим препаратам микрофлору может дать фору даже третьего и четвертого поколения цефалоспоринов. Бета-лактамный антибиотик из группы карбапенемов – лекарственное средство, применяется в особо тяжелых случаях заболевания, когда возбудители не поддаются лечению другими препаратами.

    Резервное средство номер два

    "Азтреонам" - наиболее яркий представитель монобактамов, он характеризуется достаточно узким спектром действия. Это бета-лактамный антибиотик наиболее эффективен против грамположительных аэробов. Однако следует отметить, что, как и "Имипенем", "Азтреонам" практически нечувствителен к бета-лактамаз, что делает его препаратом выбора при тяжелых формах заболеваний, вызванных этими возбудителями, особенно при неэффективности лечения другими антибиотиками.

    Спектр действия бета-лактамных антибиотиков

    Подводя итог вышесказанному, следует отметить, что препараты указанных групп имеют влияние на огромное количество разновидностей болезнетворных микроорганизмов. Механизм действия бета-лактамных антибиотиков таков, что не оставляет шансов микробов на выживание: блокада синтеза клеточной стенки – смертельный приговор для бактерий.
    Грамположительные и грамотрицательные организмы, аэробы и анаэробы На всех этих представителей болезнетворной флоры найдется высокоэффективный препарат. Конечно, есть среди данных антибиотиков и узкоспециализированные средства, но большинство все же готов вступить в бой сразу с несколькими возбудителями инфекционных заболеваний. Бета-лактамные антибиотики способны противостоять даже представителям нозокомиальной флоры, которая является наиболее устойчивой к лечению.

    Что такое госпитальные штаммы?

    Речь идет о микроорганизмах, имеющихся в медицинских учреждениях. Источниками их появления служат пациенты и медперсонал. Особенно опасны скрытые, вялотекущие формы заболеваний. Больница – идеальное место, где собираются переносчики всех возможных видов инфекционных болезней. А нарушение санитарных правил и норм является благодатной почвой для того, чтобы данная флора нашла себе нишу для существования, где бы она могла жить, размножаться и приобретать устойчивость к лекарственным препаратам. Высокая резистентность госпитальных штаммов обусловлена прежде всего тем, что, избрав своей средой обитания больничное учреждение, бактерии получают возможность контактировать с различными лекарственными средствами. Естественно, что влияние препаратов на микроорганизмы происходит случайно, не имея целью уничтожить, и в малых дозах, а это способствует тому, что представители госпитальной микрофлоры могут выработать защиту против губительных для них механизмов, научиться противостоять им. Так и появляются штаммы, бороться с которыми очень трудно, а порой кажется, что и невозможно. Антибиотики бета-лактамного ряда в той или иной мере пытаются решить эту сложную задачу. Среди них есть представители, способные достаточно успешно бороться даже с самыми нечувствительными к лекарствам бактериями. Это препараты резерва. Применение их ограничено, а назначаются они только в том случае, когда это действительно необходимо. Если же эти антибиотики будут использоваться необоснованно часто, то, скорее всего, это закончится падением их эффективности, ведь тогда бактерии получат возможность взаимодействовать с небольшими дозами этих препаратов, изучать их и вырабатывать способы защиты.

    Когда назначают бета-лактамные антибиотики?

    Показания для использования этой группы препаратов обусловлены в первую очередь их спектром действия. Наиболее целесообразно назначать бета-лактамный антибиотик при инфекции,

    возбудитель которой чувствителен к действию данного лекарства. Пенициллины хорошо зарекомендовали себя в лечении фарингита, тонзиллита, пневмонии, скарлатины, менингита, бактериального эндокардита, актиномикоза, анаэробных инфекций, лептоспироза, сальмонеллеза, шигеллеза, инфекционных заболеваний кожи и мягких тканей. Не стоит забывать и о препаратах, способных бороться с синегнойной палочкой. Цефалоспорины обладают схожим спектром действия, поэтому и показания для них почти те же, что и для пенициллинов. Однако следует сказать, что эффективность цефалоспоринов, особенно последних двух поколений, не в пример выше. Монобактамы и карбапенемов рассчитаны на борьбу с наиболее тяжелыми и плохо поддающимися лечению заболеваниями, в том числе и вызванные больничными штаммами. Они также эффективны при сепсисе и септическом шоке.

    Нежелательное действие

    Как уже говорилось, бета-лактамные антибиотики (препараты, относящиеся к этой группе, перечислены выше) отличаются сравнительно небольшим количеством вредных для организма эффектов. Редко встречаются судорожный синдром и симптомы расстройства пищеварительной системы не представляют угрозы для жизни. По-настоящему опасными могут стать тяжелые аллергические реакции на введение лекарств из числа бета-лактамным антибиотикам. Высыпания, кожный зуд, ринит и конъюнктивит не представляют угрозы для жизни, хотя и весьма неприятные. Чего действительно стоит опасаться, так это таких тяжелых реакций, как отек Квинке (особенно в области гортани, что сопровождается выраженным удушьем вплоть до невозможности дышать) и анафилактический шок. Поэтому вводить препарат можно только после выполнения пробы на аллергию. Возможны перекрестные реакции. Бета-лактамные антибиотики, классификация которых предполагает наличие большого числа групп лекарственных средств, по строению очень похожи друг на друга, а значит, в случае непереносимости одного из них все остальные тоже будут восприниматься организмом в качестве аллергена.

    Несколько слов о факторах, повышающих резистентность бактерий

    Постепенное снижение эффективности антибактериальных препаратов (в том числе и бета-лактамным антибиотикам) обусловлено необоснованно частым и часто неправильным их назначением. Неполный курс лечения, применение малых терапевтических доз не способствуют выздоровлению, но зато дают возможность микроорганизмам «тренироваться», изобретать и отрабатывать методы защиты от лекарственных препаратов. Так стоит ли удивляться, что последние становятся со временем малоэффективными? Хотя сейчас антибиотики и не отпускаются в аптеках без рецепта, достать их все же можно. А это означает, что самолечение и связанные с ним проблемы (использование все время одного и того же препарата, необоснованное прерывание курса терапии, неправильно подобранные дозы и др.) останутся, создавая условия для выращивания резистентных штаммов.
    Никуда не денется и госпитальная флора, имеет возможность активно контактировать с различными препаратами и изобретать все новые способы противодействия им. Что же делать? Не заниматься самолечением, выполнять рекомендации врача: принимать лекарства так долго, как это нужно, и в правильных дозах. С нозокомиальной флорой бороться, конечно, сложнее, но все же это возможно. Усиление санитарных норм и их неукоснительное исполнение позволят снизить вероятность создания благоприятных условий для размножения резистентной флоры.

    Несколько слов в заключение

    Очень большая тема – бета-лактамные антибиотики. Фармакология (наука о лекарственных препаратах и их влияние на организм) посвящает им несколько глав, которые включают в себя не только общую характеристику группы, но и содержат описание наиболее известных ее представителей. Данная же статья не претендует на полноту изложения, лишь пытается познакомить с основными моментами, знать что о этих лекарственных препаратах просто необходимо. Будьте здоровы и не забывайте: перед применением того или иного антибиотика внимательно изучите инструкцию и неукоснительно следуйте рекомендациям, а еще лучше посоветуйтесь со специалистом.

    Дата публикации: 1.05.17

    b-Лактамы были первыми антибиотиками, которые стали применяться в медицине, и по-существу они дали начало эпохе современной антибактериальной химиотерапии. Первым антибиотиком является бензилпенициллин, который стал использоваться в клинической практике в 1941 г. В конце 50-х годов были синтезированы первые полусинтетические пенициллины, в начале 60-х - цефалоспорины, в середине 80-х - карбапенемы.

    За эти годы синтезировано более 70 антибиотиков этого класса, однако в настоящее время в медицине реально применяется около 30 препаратов. За более чем полувековую историю многие b-лактамы были исключены из практического применения, но оставшиеся сохраняют ведущие позиции во многих областях антимикробной химиотерапии, хотя их позиционирование при некоторых инфекционных заболеваниях изменилось. Однако до настоящего времени антибиотики этого класса являются наиболее часто назначаемыми как в амбулаторной практике, так и в стационаре. В настоящем обзоре представлен современный взгляд на место b-лактамных антибиотиков в антимикробной химиотерапии с акцентированием на особенности антимикробной активности и резистентности отдельных препаратов и указанием их преимущественного позиционирования в схемах лечения (средства выбора или 1-го ряда). Предпринята также попытка представить взвешенную сравнительную характеристику отдельных препаратов, сходных по спектру антимикробной активности.

    b-Лактамы (b-лактамные антибиотики) включают большую группу лекарственных средств, имеющих b-лактамное кольцо. К ним относятся пенициллины, цефалоспорины, карбапенемы, монобактамы. Отдельную группу составляют комбинированные препараты, состоящие из b-лактамного антибиотика (пенициллины, цефалоспорины) и ингибитора b-лактамаз (клавулановая кислота, сульбактам, тазобактам) и получившие название "ингибиторозащищенные b-лактамы".

    Антимикробная активность

    b-Лактамы обладают широким спектром антимикробного действия, включающим грамположительные и грамотрицательные микроорганизмы. Природной устойчивостью к b-лактамам обладают микоплазмы. b-Лактамы не действуют на микроорганизмы, локализующиеся внутри клеток, в которые препараты плохо проникают (хламидии, риккетсии, легионеллы, бруцеллы и др.). Большинство b-лактамов не действует на анаэробы. Также устойчивы ко всем b-лактамам метициллин-резистентные стафилококки.

    Данные о природной активности b-лактамов в отношении клинически значимых микроорганизмов и ориентировочные сведения об их приобретенной устойчивости к отдельным антибиотикам приведены в таблице.

    Механизм действия и резистентность

    Индивидуальные свойства отдельных b-лактамов определяются:

    • аффинностью (сродством) к пенициллинсвязывающим белкам (ПСБ);
    • способностью проникать через внешние структуры микроорганизмов;
    • устойчивостью к гидролизу b-лактамазами.

    Мишенью действия b-лактамных антибиотиков в микробной клетке являются ПСБ, ферменты, участвующие в синтезе основного компонента наружной мембраны микроорганизмов (пептидогликан); связывание b-лактамов с ПСБ ведет к инактивации ПСБ, прекращению роста и последующей гибели микробной клетки.

    b-Лактамы свободно проникают через капсулу и пептидогликан внутрь клетки грамположительных микроорганизмов. b-Лактамы не проходят через наружную мембрану грамотрицательных бактерий, и проникновение в клетку осуществляется через пориновые каналы внешней мембраны.

    Доступ b-лактамных антибиотиков к ПСБ ограничивают ферменты - b-лактамазы, инактивирующие антибиотики. Созданы специальные вещества, предохраняющие b-лактамные антибиотики от разрушающего действия b-лактамаз (ингибиторы b-лактамаз). Лекарственные формы, в которых соединены антибиотики и ингибиторы b-лактамаз, получили название "ингибиторозащищенные b-лактамы".

    Кроме природной чувствительности (или резистентности), клиническую эффективность b-лактамов определяет приобретенная устойчивость, механизмами которой могут быть:

    • снижение аффинности ПСБ к b-лактамам;
    • снижение проницаемости внешних структур микроорганизма для b-лактамов;
    • появление новых b-лактамаз или изменение экспрессии имеющихся.

    Противопоказания и предостережения

    Аллергические реакции

    Противопоказаны b-лактамы только в случае документированной к ним гиперчувствительности. Аллергические реакции чаще отмечаются при применении пенициллинов (5-10%), реже - других b-лактамов (1-2% и менее). Имеется риск перекрестной аллергической реакции между b-лактамами: при аллергии в анамнезе на бензилпенициллин вероятность развития гиперчувствительности составляет к полусинтетическим пенициллинам около 10%, к цефалоспоринам 2-5%, к карбапенемам около 1%. При указании в анамнезе на тяжелые реакции гиперчувствительности к пенициллину (анафилактический шок, ангионевротический отек, бронхоспазм) применение других b-лактамов не допускается; при умеренных реакциях (крапивница, дерматит) возможно осторожное назначение цефалоспоринов и карбапенемов под прикрытием блокаторов Н1-гистаминовых рецепторов.

    Беременность

    При необходимости b-лактамы можно применять для лечения инфекций у беременных, так как у них не выявлено тератогенных, мутагенных или эмбриотоксических свойств.

    Нарушение функции почек

    Большинство b-лактамов не оказывает нефротоксического действия, они безопасны в терапевтических дозах, в частности у пациентов с заболеваниями почек. На фоне применения оксациллина в редких случаях возможно развитие интерстициального нефрита. Указания на нефротоксичность цефалоспоринов относятся исключительно к ранним препаратам (цефалоридин, цефалотин, цефапирин), которые уже не применяются.

    Гепатотоксичность

    Транзиторное повышение уровня трансаминаз и щелочной фосфатазы возможно при применении любых b-лактамов. Эти реакции проходят самостоятельно и не требуют отмены лекарственного средства (ЛС).

    Реакции желудочно-кишечного тракта

    Тошнота, рвота и диарея могут наблюдаться при применении всех b-лактамов. В редких случаях возможно развитие антибиотик-ассоциированной диареи, вызванной C. difficile.

    Гематологические реакции

    Применение некоторых цефалоспоринов и карбоксипенициллинов может привести к геморрагическому синдрому. Некоторые цефалоспорины (цефамандол, цефотетан, цефоперазон, цефметазол) обладают способностью вызывать гипопротромбинемию вследствие нарушения всасывания витамина К в кишечнике; реже наблюдаются кровотечения. К этой реакции предрасполагают недостаточность питания, почечная недостаточность, цирроз печени, злокачественные опухоли.

    Карбенициллин и тикарциллин следует назначать с осторожностью перед операциями из-за возможности развития геморрагического синдрома, связанного с нарушением функции мембран тромбоцитов.

    Нарушение толерантности к алкоголю

    Дисульфирамподобные реакции при приеме алкоголя могут вызвать некоторые цефалоспорины (цефамандол, цефоперазон). Пациенты, получающие лечение этими антибиотиками, должны быть осведомлены о возможности такой реакции.

    Природные пенициллины

    Бензилпенициллин

    Активен главным образом против грамположительных и грамотрицательных кокков: стафилококков (кроме продуцирующих пенициллиназу), стрептококков, пневмококков, E. faecalis (в меньшей степени), N. gonorrhoeae, N. meningitidis; проявляет высокую активность против анаэробов, C. diphtheriae, L. monocytogenes, T. pallidum, B. burgdorferi, Leptospira. По действию на кокковую флору превосходит другие пенициллины и цефалоспорины I-II поколения.

    Приобретенная резистентность

    В настоящее время большинство штаммов стафилококков (как внебольничных, так и госпитальных) продуцирует пенициллиназу и устойчивы к бензилпенициллину. Устойчивость пиогенного стрептококка к бензилпенициллину не документирована. Устойчивость пневмококков к бензилпенициллину в РФ составляет от 10 до 20% и увеличилась в последние годы. Клинически значима устойчивость гонококков, составляющая более 30%.

    Основные показания

    В неинфекционной клинике применение бензилпенициллина оправдано при стрептококковых и менингококковых инфекциях, а также газовой гангрене. При лечении бронхолегочных инфекций преимущество имеют полусинтетические пенициллины.

    • Инфекции, вызванные S. pyogenes (стрептококковый тонзиллит, скарлатина, рожа)
    • Инфекции, вызванные S. pneumoniae (внебольничная пневмония, менингит)
    • Инфекции, вызванные E. faecalis (в комбинации с гентамицином)
    • Лечение и профилактика клостридиальной инфекции (средство выбора)
    • Менингококковая инфекция (средство выбора)
    • Сифилис (средство выбора)
    • Лептоспироз
    • Актиномикоз
    • В качестве средства эмпирической терапии:
      • инфекционный эндокардит нативного клапана (в комбинации с гентамицином)
      • абсцедирующая пневмония (в комбинации с метронидазолом)

    Дозирование

    Применяется внутривенно и внутримышечно в суточной дозе от 6 млн ЕД (стрептококковые инфекции) до 24-30 млн ЕД (инфекции ЦНС).

    Бензатинбензилпенициллин

    Пролонгированная лекарственная форма бензилпенициллина.Антимикробная активность и резистентность - см. Бензилпенициллин

    Особенности фармакокинетики

    N,N-дибензилэтилендиаминовая соль бензилпенициллина - пролонгированная форма бензилпенициллина. При внутримышечном введении образует депо, из которого медленно (Тмакс достигается через 12-24 ч) высвобождается действующее начало - бензилпенициллин, который в низких концентрациях определяется в крови в течение длительного времени (до 3 нед). После внутримышечного введения в дозе 1,2 млн ЕД средние концентрации в крови через 1 нед составляют 0,1 мг/л, через 2 нед - 0,02 мг/л, через 3 нед - 0,01 мг/л.

    Связь с белками плазы 40-60%.Выводится преимущественно почками.

    Основные показания

    • Сифилис
    • Скарлатина (лечение и профилактика)
    • Профилактика ревматизма

    Феноксиметилпенициллин

    Особенности антимикробной активности

    Спектр антимикробной активности сходен с бензилпенициллином. Преимущественная активность в отношении грамположительных (стафилококки, стрептококки) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, Treponema spp., H. influenzae, Cory-nebacterium spp.

    Приобретенная резистентность - см. Бензилпенициллин

    Основные показания

    • Стрептококковый тонзиллит у детей
    • Профилактика эндокардита при стоматологических процедурах
    • Скарлатина
    • Инфекции полости рта и десен

    Пенициллиназостабильные пенициллины

    Оксациллин

    Особенности антимикробной активности

    Активен главным образом в отношении грамположительных кокков (Staphylococcus spp., S. pyogenes, S. pneumoniae, S. viridans, S. agalactiae); не действует на энтерококки. По природной активности против грамположительных кокков уступает природным пенициллинам. Не проявляет активности в отношении грамотрицательных бактерий (кроме Neisseria spp.), анаэробов. Стабилен к стафилококковым b-лактамазам.

    Приобретенная резистентность

    Уровень устойчивости внебольничных штаммов S. aureus менее 5%, частота оксациллин-резистентных штаммов в стационарах варьирует между отделениями и в отделениях интенсивной терапии может достигать 50% и выше.

    Основные показания

    В настоящее время применение оксациллина целесообразно исключительно при стафилококковых инфекциях (в основном внебольничных).

    • Стафилококковые инфекции различной локализации (средство выбора)
    • Инфекции предполагаемой стафилококковой этиологии:
    • неосложненные инфекции кожи и мягких тканей (фурункул, карбункул, пиодермия и др.)
      • мастит
      • инфекционный эндокардит у внутривенных наркоманов (средство выбора)
      • острый гнойный артрит (средство выбора)
      • катетер-ассоциированная ангиогенная инфекция

    Дозирование

    Внутривенно, внутримышечно и внутрь; суточная доза 4-12 г (с интервалом 4-6 ч). Препарат предпочтительно назначать парентерально, так как биодоступность при приеме внутрь не очень высокая. Для перорального применения предпочтительнее использовать клоксациллин. При тяжелых инфекциях суточная доза составляет 8-12 г (в 4-6 введений).

    Клоксациллин

    Особенности антимикробной активности

    Спектр антимикробной активности близок оксациллину (см.). Стабилен к стафилококковым b-лактамазам.

    Приобретенная резистентность - см. Оксациллин

    Основные показания

    • Стафилококковые инфекции различной локализации, легкие и средней тяжести
    • Инфекции предполагаемой стафилококковой этиологии:
      • неосложненные инфекции кожи и мягких тканей (фурункул, карбункул, пиодермия и др.)
      • острый мастит

    Дозирование

    Внутрь по 500 мг 4 раза в сутки

    Аминопенициллины

    Амоксициллин

    Полусинтетический пенициллин широкого спектра для перорального применения.

    Особенности антимикробной активности

    Обладает широким спектром антмикробного действия. Наиболее активен в отношении грамположительных кокков (S. pyogenes, S. viridans, S. pneumoniae, чувствительных к пенициллину стафилококков), грамотрицательных кокков (N. gonorrhoeae, N. meningitidis), листерий, H. influenzae, грамположительных анаэробов, в меньшей степени - энтерококков, H. pylori, некоторых энтеробактерий (E. coli, P. mirabilis, Shigella spp., Salmonella spp.).

    Приобретенная резистентность

    Не стабилен к стафилококковым пенициллиназам, поэтому большинство штаммов S. aureus устойчиво. Устойчивость пневмококков и гемофильной палочки к амоксициллину в РФ незначительная, устойчивость E. faecalis составляет 10-15%. Устойчивость внебольничных штаммов энтеробактерий умеренная (10-30%), госпитальные штаммы обычно устойчивы.

    Основные показания

    В настоящее время рассматривается как средство выбора при неосложненных внебольничных респираторных инфекциях у взрослых и детей в амбулаторной практике; при этих заболеваниях не уступает по эффективности ингибиторозащищенным аминопенициллинам. Входит в основные схемы эрадикационной терапии при язвах желудка и двенадцатиперстной кишки.

    • Нетяжелые внебольничные инфекции верхних и нижних дыхательных путей:
      • пневмония (средство выбора)
      • острый средний отит (средство выбора)
      • острый синусит (средство выбора)
      • стрептококковый тонзиллит - ангина (средство выбора)
    • Кишечные инфекции (дизентерия, сальмонеллез)
    • В схемах эрадикации H. pylori
    • Профилактика эндокардита при стоматологических вмешательствах

    Дозирование

    Применяется внутрь (детям в виде суспензии). Кратность применения - 3 раза в сутки. Рекомендованная суточная доза у взрослых составляет 1,5 г. Профилактика эндокардита - 3 г однократно.

    Особенности лекарственной формы: диспергированная лекарственная форма антибиотика (солютаб) характеризуется более полным всасыванием в ЖКТ по сравнению с обычными лекарственными формами в виде таблеток и капсул, что сопровождается созданием в крови более высоких сывороточных концентраций, а также меньшим влиянием препарата на кишечную микрофлору.

    Ампициллин

    Полусинтетический пенициллин широкого спектра для парентерального и перорального применения.

    Особенности антимикробной активности

    Спектр природной активности сходен с амоксициллином. Приобретенная резистентность - см. Амоксициллин

    Основные показания

    • Инфекции, вызванные E. faecalis (средство выбора)
    • Менингит, вызванный листериями и гемофильной палочкой (в комбинации с аминогликозидами)
    • Инфекции нижних дыхательных путей:
      • внебольничная пневмония среднетяжелого течения (средство выбора)
      • обострение хронического бронхита
    • Вторичный гнойный менингит у детей и пожилых (в комбинации с цефалоспоринами III поколения)
    • Кишечные инфекции (шигеллез, сальмонеллез)
    • Инфекционный эндокардит нативного клапана (в комбинации с гентамицином) (средство выбора)

    Дозирование

    Применяется парентерально и внутрь. Препарат характеризуется низкой биодоступностью при приеме внутрь, поэтому для перорального применения целесообразно использовать амоксициллин, за исключением кишечных инфекций.

    Суточная доза при внутримышечном и внутривенном введении 4-12 г (с интервалом 4-6 ч): при респираторных инфекциях - 4 г/сут, при инфекциях ЦНС и эндокардите - 8-12 г/сут; внутрь (только при кишечных инфекциях) - по 0,5-1 г 4 раза в сутки.

    Карбоксипенициллины

    Карбенициллин

    Антипсевдомонадный пенициллин широкого спектра.

    Особенности антимикробной активности

    Проявляет активность в отношении грамположительных и грамотрицательных микробов, включая стрептококки, пневмококки, нейссерии, листерии, грамположительные анаэробы (клостридии, пептострептококки), в меньшей степени - некоторых видов энтеробактерий, гемофильной палочки, синегнойной палочки (по антисинегнойной активности уступает другим антипсевдомонадным пенициллинам).

    Приобретенная резистентность

    Высокий уровень характерен для стафилококков, энтеробактерий, синегнойной палочки, в связи с чем применение ограничено случаями инфекций с документированной чувствительностью возбудителей к антибиотику.

    Основные показания

    Инфекции, вызванные чувствительными к карбенициллину штаммами P. aeruginosa (в комбинации с аминогликозидами или фторхинолонами).

    Дозирование

    Применяется в виде внутривенной инфузии в больших дозах (по 5 г 5-6 раз в сутки).

    С осторожностью назначают при:

    • нарушении функции почек
    • кровотечениях в анамнезе
    • сердечно-сосудистой недостаточности
    • артериальной гипертензии

    При сердечно-сосудистой или почечной недостаточности применение карбенициллина может вызвать гипернатриемию и гипокалиемию.

    Уреидопенициллины

    В эту группу входят пиперациллин, азлоциллин, мезлоциллин, но только азлоциллин сохраняет значение в медицинской практике.

    Азлоциллин

    Особенности антимикробной активности

    Спектр антимикробной активности включает грамположительные и грамотрицательные микробы, а также анаэробы. В отношении бактерий семейства Еnterobacteriaceae более активен в отношении E. coli, P. mirabilis, P. vulgaris. Высокоактивен в отношении H. influenzae и N. gonorrhoeae. Относится к антисинегнойным пенициллинам, причем его активность превосходит карбенициллин.

    Приобретенная резистентность

    Не стабилен к стафилококковым пенициллиназам, поэтому большинство штаммов устойчиво. В настоящее время многие госпитальные штаммы грамотрицательных бактерий проявляют устойчивость к азлоциллину.

    Основные показания

    Инфекции, вызванные чувствительными к карбенициллину штаммами P. aeruginosa (в комбинации с аминогликозидами или фторхинолонами)

    В настоящее время показания к применению карбенициллина ограничены в связи с высоким уровнем устойчивости микробов к препарату.

    Дозирование

    Применяется внутривенно (капельно, болюсно), внутримышечно. Стандартная доза для взрослых по 2 г 3 раза в сутки. При тяжелых инфекциях: разовая доза 4-5 г (даже 10 г).

    С осторожностью назначают: в I триместре беременности; при кормлении грудью; при одновременном назначении гепатоксических ЛС и антикоагулянтов.

    Ингибиторозащищенные пенициллины

    Одним из методов борьбы с резистентностью микробов, связанной с выработкой ими b-лактамаз, является применение специальных веществ b-лактамного строения, которые связывают ферменты и тем самым предупреждают их разрушающее действие на b-лактамные антибиотики. Эти вещества получили название "ингибиторы b-лактамаз", а их комбинации с b-лактамными антибиотики - "ингибиторозащищенные b-лактамы".

    В настоящее время применяются 3 ингибитора b-лактамаз:

    • Клавулановая кислота
    • Сульбактам
    • Тазобактам

    Ингибиторы b-лактамаз самостоятельно не применяются, а используются только в комбинации с b-лактамами.

    К ингибиторозащищенным пенициллинам относят: амоксициллин/клавуланат, ампициллин/ сульбактам, амоксициллин/сульбактам, пиперациллин/тазобактам, тикарциллин/клавуланат.

    Эти антибиотики представляют собой фиксированные комбинации полусинтетических пенициллинов (аминопенициллинов, карбоксипенициллинов или уреидопенициллинов) с ингибиторами b-лактамаз, которые необратимо связывают различные b-лактамазы и таким образом защищают пенициллины от разрушения этими ферментами. В результате резистентные к пенициллинам штаммы микроорганизмов становятся чувствительными к комбинации данных ЛС с ингибиторами. Спектр природной активности ингибиторозащищенных b-лактамов соответствует содержащимся в их составе пенициллинам; различается только уровень приобретенной устойчивости.

    Ингибиторозащищенные пенициллины широко применяются в клинической практике, причем амоксициллин/клавуланат, ампициллин/сульбактам и амоксициллин/сульбактам преимущественно при внебольничных инфекциях, а тикарциллин/клавуланат и пиперациллин/тазобактам - при госпитальных.

    Амоксициллин/клавуланат

    Особенности антимикробной активности

    Клавулановая кислота предупреждает ферментативную инактивацию амоксициллина при действии b-лактамаз.

    Активен в отношении грамположительных (стрептококки, пневмококки, стафилококки, кроме оксациллин-резистентных) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), менее активен против энтерококков и некоторых энтеробактерий (E. coli, P. mirabilis, Klebsiella spp.).

    Приобретенная резистентность

    Большинство внебольничных штаммов S. aureus чувствительно. Устойчивость S. pneumoniae, H. influenzae в РФ незначительна. В последние годы наблюдается рост устойчивости внебольничных уропатогенных штаммов E. coli, составляющий в настоящее время около 30%. Устойчивость грамотрицательных бактерий кишечной группы варьирует - внебольничные штаммы, как правило, чувствительны, а госпитальные - часто устойчивы.

    Основные показания

    Наиболее хорошо изучен среди ингибиторозащищенных аминопенициллинов в контролируемых клинических исследованиях и поэтому имеет наиболее широкие показания.

    • Внебольничные инфекции верхних и нижних дыхательных путей:
      • пневмония легкого и среднетяжелого течения
      • пневмония деструктивная и абсцедирующая (средство выбора)
      • обострение хронического бронхита (средство выбора)
      • острый средний отит
      • острый синусит
      • обострение хронического синусита (средство выбора)
      • рецидивирующий тонзиллофарингит (средство выбора)
      • эпиглоттит (средство выбора)
    • Неосложненные инфекции кожи и мягких тканей
    • Внебольничные интраабдоминальные инфекции (средство выбора)
    • Внебольничные гинекологические инфекции органов малого таза (в комбинации с доксициклином):
      • эндометрит
      • сальпингоофорит
    • Раны после укусов животных (средство выбора)
    • Профилактика в абдоминальной хирургии и акушерстве-гинекологии (средство выбора)

    Дозирование

    Внутрь 375-625 мг 3 раза в сутки или 1 г 2 раза в сутки, внутривенно 1,2 г 3 раза в сутки. Профилактика в хирургии: внутривенно 1,2 г за 30-60 мин до операции.

    Особенности лекарственной формы: диспергированная лекарственная форма антибиотика (солютаб) характеризуется более равномерным всасыванием в ЖКТ по сравнению с обычными лекарственными формами препарата, что обеспечивает более стабильные терапевтические концентрации амоксициллина и клавулановой кислоты в крови. В результате увеличения биодоступности клавулановой кислоты снижается частота желудочно-кишечных побочных эффектов.

    Ампициллин/сульбактам

    Особенности антимикробной активности

    Активен в отношении грамположительных (стрептококки, стафилококки, кроме оксациллин-резистентных) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), менее активен против энтерококков и некоторых энтеробактерий (E. coli, P. mirabilis, Klebsiella spp.).

    Приобретенная резистентность - см. Амоксициллин/клавуланат

    Основные показания

    • Инфекции кожи и мягких тканей
    • Внебольничные интраабдоминальные инфекции
    • Внебольничные гинекологические инфекции
    • Внебольничная деструктивная или абсцедирующая пневмония
    • Профилактика в абдоминальной хирургии и акушерстве-гинекологии

    При инфекциях верхних дыхательных путей и пневмонии целесообразнее назначать амоксициллин/клавуланат.

    Дозирование

    Внутривенно 1,5-3 г 4 раза в сутки, внутрь 375-750 мг 2 раза в сутки.Профилактика в хирургии: внутривенно 3 г за 30-60 мин до операции

    Амоксициллин/сульбактам

    Особенности антимикробной активности и резистентности - см. Ампициллин/сульбактам.

    Основные показания

    Менее изучен, чем амоксициллин/клавуланат. Назначение возможно при внебольничных респираторных инфекциях и неосложненных инфекциях кожи и мягких тканей, абдоминальных инфекциях.

    Дозирование

    Внутрь по 0,5 г 3 раза в сутки, внутривенно или внутримышечно по 1 г 3 раза в сутки (расчет по амоксициллину).

    Тикарциллин/клавуланат

    Комбинация антисинегнойного карбоксипенициллина тикарциллина и ингибитора b-лактамаз клавуланата.

    Особенности антимикробной активности

    Клавулановая кислота предупреждает ферментативную инактивацию тикарциллина при действии b-лактамаз. Активен в отношении грамположительных (стрептококки, чувствительные к пенициллину пневмококки, оксациллин-чувствительные стафилококки) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), P. aeruginosa, некоторых видов Enterobacteriaceae.

    Приобретенная резистентность

    Широко распространена у госпитальных штаммов Enterobacteriaceae и P. aeruginosa.

    Основные показания

    Внебольничные и нетяжелые госпитальные инфекции (аэробно-анаэробные) вне отделений интенсивной терапии:

    • легочные - абсцесс, эмпиема
    • интраабдоминальные, малого таза

    Дозирование

    Внутривенно (инфузия) взрослым по 3,2 г 3-4 раза в сутки.

    Цефалоспорины

    Все цефалоспорины являются производными 7-аминоцефалоспорановой кислоты.

    В зависимости от спектра антимикробной активности цефалоспорины разделяют на 4 поколения (генерации).

    Цефалоспорины I поколения активны преимущественно против грамположительных микроорганизмов (стафилококки, стрептококки, пневмококки). Некоторые грамотрицательные энтеробактерии (E. coli, P. mirabilis) природно чувствительны к цефалоспоринам I поколения, но приобретенная устойчивость к ним высокая. Препараты легко подвергаются гидролизу b-лактамазами. Спектр пероральных и парентеральных цефалоспоринов одинаковый, хотя активность немного выше у парентеральных средств, среди которых наиболее активен цефазолин.

    Цефалоспорины II поколения более активны в отношении грамотрицательных бактерий по сравнению с цефалоспоринами I поколения и более устойчивы к действию b-лактамаз (цефуроксим более стабилен, чем цефамандол). Препараты сохраняют высокую активность в отношении грамположительных бактерий.

    Пероральные и парентеральные средства по уровню активности существенно не различаются. Один препарат - цефокситин - активен в отношении анаэробных микроорганизмов.

    Цефалоспорины III поколения преимущественно активны в отношении грамотрицательных микроорганизмов и стрептококков/пневмококков. Антистафилококковая активность невысокая. Антипсевдомонадные цефалоспорины III поколения (цефтазидим, цефоперазон) активны в отношении P. aeruginosa и некоторых других неферментирующих микроорганизмов. Цефалоспорины III поколения обладают более высокой стабильностью к b-лактамазам, но разрушаются b-лактамазами расширенного спектра и хромосомными b-лактамазами класса С (AmpC).

    Цефалоспорины IV поколения сочетают высокую активность цефалоспоринов I-II поколения в отношении стафилококков и цефалоспоринов III поколения - в отношении грамотрицательных микроорганизмов. В настоящее время цефалоспорины IV поколения (цефепим) имеют наиболее широкий спектр антимикробной активности среди цефалоспориновых антибиотиков. Цефалоспорины IV поколения в некоторых случаях проявляют активность в отношении тех штаммов Enterobacteriaceae, которые устойчивы к цефалоспоринам III поколения.

    Цефепим полностью устойчив к гидролизу AmpC b-лактамазами и частично противостоит гидролизу плазмидными b-лактамазами расширенного спектра, проявляет высокую активность в отношении P. aeruginosa (сравнимую с цефтазидимом).

    Таким образом, у цефалоспоринов от I к IV поколению увеличивается активность в отношении грамотрицательных бактерий и пневмококков и немного снижается активность в отношении стафилококков от I к III поколению; от I к IV поколению увеличивается устойчивость к действию b-лактамаз грамотрицательных бактерий.

    Все цефалоспорины практически лишены активности против энтерококков, малоактивны против грамположительных анаэробов и слабо активны против грамотрицательных анаэробов.

    • ВВЕДЕНИЕ
      • 1. Отличительные свойства новых бета-лактамных антибиотиков
      • 2. Бактериальные осложнения при ВИЧ-инфекции и их лечение
      • Заключение
    ВВЕДЕНИЕ Антибиотики (антибиотические вещества) - это продукты обмена микроорганизмов, избирательно подавляющие рост и развитие бактерий, микроскопических грибов, опухолевых клеток. Образование антибиотиков - одна из форм проявления антагонизма.В научную литературу термин веден в 1942 г. Ваксманом, - "антибиотик - против жизни". По Н.С. Егорову: "Антибиотики - специфические продукты жизнедеятельности организмов, их модификации, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов (бактериям, грибам, водорослям, протозоа), вирусам или к злокачественным опухолям, задерживая их рост или полностью подавляя развитие".Специфичность антибиотиков по сравнению с другими продуктами обмена (спиртами, органическими кислотами), также подавляющими рост отдельных микробных видов, заключается в чрезвычайно высокой биологической активности.Существует несколько подходов в классификации антибиотиков: по типу продуцента, строению, характеру действия. По химическому строению различают антибиотики ациклического, алициклического строения, хиноны, полипептиды и др. По спектру биологического действия антибиотики можно подразделить на несколько групп:антибактериальные, обладающие сравнительно узким спектром действия, подавляющие развитие грамположительных микроорганизмов и широкого спектра действия, подавляющие развитие как грамположительных, так и грамотрицительных микроорганизмов;противогрибковые, группа полиеновых антибиотиков, действующие на микроскопические грибы;противоопухолевые, действующие на опухолевые клетки человека и животных, а также на микроорганизмы.В настоящее время описано свыше 6000 антибиотиков, но на практике применяется только около 150, так как многие обладают высокой токсичностью для человека, другие - инактивируются в организме и пр.Бета-лактамные антибиотики (в-лактамные антибиотики, в-лактамы) - группа антибиотиков, которые объединяет наличие в структуре в-лактамного кольца.К бета-лактамам относятся подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов. Сходство химической структуры предопределяет одинаковый механизм действия всех в-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрёстную аллергию к ним у некоторых пациентов.Пенициллины, цефалоспорины и монобактамы чувствительны к гидролизующему действию особых ферментов - в-лактамаз, вырабатываемых рядом бактерий. Карбапенемы характеризуются значительно более высокой устойчивостью к в-лактамазам.С учётом высокой клинической эффективности и низкой токсичности в-лактамные антибиотики составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.Бета-лактамные антибиотики, обладающие пространственным сходством с субстратом реакции D-аланил-D-аланином, образуют ковалентную ацильную связь с активным центром транспептидазы и необратимо ингибируют ее. Поэтому транспептидазы и подобные им ферменты, участвующие в транспептидировании, называют также пенициллинсвязывающими белками.Почти все антибиотики, подавляющие синтез клеточной стенки бактерий, бактерицидны - они вызывают гибель бактерий в результате осмотического лизиса. В присутствии таких антибиотиков аутолиз клеточной стенки не уравновешивается процессами восстановления, и стенка разрушается эндогенными пептидогликангидролазами (аутолизинами), обеспечивающими ее перестройку в процессе нормального роста бактерий.1. Отличительные свойства новых бета-лактамных антибиотиков Бета-лактамные антибиотики (БЛА) являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов - это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмовБлагодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название - пенициллинсвязывающие белки (PBPs). Молекулы PBPs жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.Связывание БЛА с PBPs ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к PBPs. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.К практически важным свойствам бета-лактамаз относятся:субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени);локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри - и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона;тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции);чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование).В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам.Таким образом, индивидуальные свойства отдельных БЛА определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.У некоторых встречающихся в клинике резистентных к беталактамам штаммов бактерий резистентность проявляется на уровне PBPs, то есть мишени уменьшают сродство к "старым" беталактамам. Поэтому новые природные и полусинтетические беталактамы проверяются на степень сродства к PBPs этих штаммов. Высокое сродство означает перспективность новых бета-лактамных структур.При оценке новых беталактамных структур проверяется их устойчивость к действию разных беталактамаз - ренициллаз и цефалоспориназ плазмидного и хромосомного происхождения, выделенных из разных бактерий. Если большинство используемых беталактамаз не инактивируют новую беталактамную структуру, то она признается перспективной для клиники.Химиками были созданы нечувствительные к распространенным у стафилококков пенициллиназам полусинтетические пенициллины: метициллин, оксациллин и нечувствительный к ферменту из синегнойной палочки карбенициллин. Получить эти полусинтетические пенициллины удалось после того, как из бензилпенициллина была выведена 6АПК (6-аминопенициллиновая кислота). Путем ее ацилирования были получены указанные антибиотики.Многие беталактазы теряют способность к гидролизу беталактамного кольца таких антибиотиков, как у цефамицина С при наличии метоксигруппы или других заместителей в 6Ь-положении у пенициллинов и в 7Ь-положении у цефалоспоринов.Эффективность беталактамов против граммоотрицательных бактерий зависит и от такого фактора, как скорость прохождения через пориновые пороги. Преимущества имеют компактные молекулы, которые могут проникать через катионоселективные и анионоселективные каналы, такие, как имипенем. К его ценным свойствам относится также и устойчивость к ряду беталактамаз.Беталактамы, у которых вводимые в ядро молекулы-заместители создают катионный центр, высокоактивны против многих кишечных бактерий по причине катионоселективности пориновых каналов у бактерий, обитающих в кишечном тракте, например, лекарственный препарат цефтазидим.Часто модификации затрагивают структуру сконденсированного с беталактамом пяти - или шестичленного кольца. Если сера замещена в нем на кислород или углерод, то такие соединения называют "неклассическими" беталактамами (например, имипенем). К "неклассическим" также относятся такие беталактамы, у которых беталактамное кольцо не сконденсировано с другим кольцом. Они получили название "монобактамы". Наиболее известный препарат из "монобактамов" - азтреонам.Большой интерес представляют природные соединения, обладающие высокой антибактериальной активностью и широким спектром действия. При контакте с мишенью их гаммалактамное кольцо расщепляется и происходит ацилирование одного из аминокислотных остатков в активном центре транспептиназ. Беталактамы могут инактивировать и гаммалактамы, но большая стабильность пятичленного гаммалактамного кольца расширяет возможности химического синтеза, то есть получение синтетических гаммалактамов с пространственной защитой гаммалактамного кольца от беталактамаз.Ряды беталактамных синтетических антибиотиков быстро растут и используются для лечения самых разнообразных инфекций.2. Бактериальные осложнения при ВИЧ-инфекции и их лечение ВИЧ - вирус иммунодефицита человека, вызывающий вирусное заболевание - ВИЧ-инфекцию, последняя стадия которой известна как синдром приобретённого иммунодефицита (СПИД) - в отличие от врождённого иммунодефицита.ВИЧ заражает прежде всего клетки иммунной системы (CD4+ Т-лимфоциты, макрофаги и дендритные клетки), а также некоторые другие типы клеток. Инфицированные ВИЧ CD4+ Т-лимфоциты постепенно гибнут. Их гибель обусловлена главным образом тремя факторами:непосредственным разрушением клеток вирусом;запрограммированной клеточной смертью;убийством инфицированных клеток CD8+ Т-лимфоцитами.Постепенно субпопуляция CD4+ Т-лимфоцитов сокращается, в результате чего клеточный иммунитет снижается, и при достижении критического уровня количества CD4+ Т-лимфоцитов организм становится восприимчивым к оппортунистическим (условно-патогенным) инфекциям.Бактериальная пневмония у ВИЧ-инфицированных наблюдается чаще, чем у остального населения, и подобно пневмоцистной пневмонии оставляет после себя рубцы в легких. Это нередко приводит к рестриктивным нарушениям дыхания, которые сохраняются годами. Бактериальная пневмония встречается и на ранних стадиях ВИЧ-инфекции, однако по мере усугубления иммунодефицита ее риск возрастает. Заболевание бактериальной пневмонией значительно ухудшает долгосрочный прогноз. Поэтому бактериальная пневмония, возникающая чаще одного раза в год, считается СПИД - индикаторным заболеванием.Наиболее часто возбудителями оказываются пневмококки и Haemophilus influenzae. На фоне ВИЧ - инфекции чаще, чем при нормальном иммунитете, высеваются Staphylococcus aureus, Moraxella catarrhalis, а на поздних стадиях, когда количество лимфоцитов CD4 не превышает 100 мкл -1 , еще и Pseudomonas spp. При наличии в легких медленно увеличивающегося инфильтрата с полостью распада следует заподозрить редко встречающуюся инфекцию, вызываемую Rhodococcus equi, и легочный нокардиоз. У 10-30% больных возбудителей пневмонии бывает несколько, причем одним из них может быть Pneumocystis jiroveci, что затрудняет диагностику.Согласно рекомендациям для больных с внебольничной пневмонией и сопутствующими заболеваниями, назначают цефалоспорин второго (например, цефуроксим) или третьего поколения (например, цефотаксим и цефтриаксон) либо комбинированный препарат аминопенициллина и ингибитора - лактамаз - ампициллин/сульбактам или амоксициллин/клавуланат (например, Аугментин® в дозе 875/125 мг 2 раза в сутки). В местности, где повышена заболеваемость легионеллезом, к этим препаратам добавляют макролид, например Клацид в дозе 500 мг 2 раза в сутки.Из бактериальных инфекций у больных в стадии СПИД-АК часто наблюдается диссеминированный туберкулез. Периферические лимфатические узлы поражают кожу, легкие, пищеварительные тракты, центральную нервную, а также другие органы. Это считается главной причиной смерти ВИЧ-инфицированных больных в регионах, где повышена заболеваемость туберкулезом.Обострение эпидемиологической ситуации по туберкулезу в мире связывают со стремительным нарастанием масштабов пандемии ВИЧ-инфекции. Отсутствие надежных средств профилактики и лечения последней позволяют отнести эту проблему к одной из актуальных на современном этапе, так как высокая инфицированность микобактериями туберкулеза и быстрые распространения в этой же среде ВИЧ делают прогноз сочетанной патологии крайне неблагоприятным. В странах с высокой инфицированностью населения ВИЧ у 30-50% больных ВИЧ-инфекцией развивается туберкулез.Туберкулез выявляется с поражением органов дыхания: инфильтративный, очаговый, фибринозно-кавернозный, кавернозный туберкулез, туберкулома.Часто встречаются внелегочные формы туберкулеза: поражение лимфатических узлов, эксудативный плеврит, диссеминированный туберкулез, туберкулезный менингит, генерализованный.При постановке диагноза туберкулеза и его лечения у ВИЧ-инфицированных следует учитывать, что клинические проявления туберкулеза бывают часто атипичны:отмечается поражение лимфатических узлов, нередко наблюдается генерализованное увеличение лимфатических узлов, нехарактерное для других форм туберкулеза;встречается миллиарный процесс, микобактерии могут быть выделены при культивировании крови, что никогда не бывает при обычном туберкулезе;при легочном процессе туберкулеза отсутствуют типичные признаки поражения легких, часто отмечается увеличение тени медиастинальных лимфатических узлов, плевральные выпоты.Нельзя одновременно начинать лечение туберкулеза и ВИЧ-инфекции из-за наложения побочных эффектов используемых препаратов, неблагоприятных лекарственных взаимодействий.1. Если количество лимфоцитов CD4 <200 мкл-1: начать ВААРТ с эфа-вирензом через 2-8 недель после начала противотуберкулезной терапии.2. Количество лимфоцитов CD4 200-350 мкл-1, то решение о назна-чении ВААРТ принимается индивидуально. Если принято положительное решение о ВААРТ, ее начинают после завершения начальной фазы противотуберкулезной терапии. Применяют либо схемы, содержащие эфавиренз в дозе 600-800 мг/сут, либо ИП-содержащие схемы, одновременно заменяя в схеме противотуберкулезной терапии рифампин на рифабутин и корректируя дозы препаратов исходя из лекарственных взаимодействий.При нокардиозе назначают: имипенем + амикацин; сульфаниламид + амикацин или миноциклин; цефтриаксон + амикацин.Другими заболеваниями, которые могут быть следствием развития СПИДа, являются сепсис, менингит, поражение костей и суставов, абсцесс, отит и другие воспалительные процессы, вызванные бактериями родов Haemophilus и Streptococcus (включая Streptococcus pneumoniae) или другими гноеродными бактериями.Антибактериальная терапия сепсиса определяется видом предполагаемого или установленного возбудителя. Если сепсис вызван грамотрицательными микроорганизмами, больному назначают карбенициллин (20-30 г/сут В/в капельно или струйно за 6-8 введений), по-прежнему продолжая применение гентамицина.При стафилококковом сепсисе терапию целесообразно начинать с применения антибиотика из группы цефалоспоринов вместе с гентамицином. Гентамицин можно заменить амикацином (500 мг 2-3 раза в день) или тобрамицином (80 мг 2-3 раза в день).У ВИЧ-инфицированных наиболее часто встречаются следующие виды стафилококковых инфекций: фурункулез, пиомиозит - типичная гнойная инфекция мышечной ткани, вызываемая S. aureus, как правило, чувствительными к метициллину штаммами; стафилококковые инфекции, связанные с введением наркотиков инъекционным путем.Лечение: при инфекции, вызванной метициллинчувствительными S. aureus (MSSA) используют антистафилококковые беталактамы (нафциллин, оксациллин, цефазолин, цефтриаксон); как правило, стафилококки чувствительны также к клиндамицину, фторхиноло-нам и ТМП-СМК. Внутрь назначается: цефалексин 500 мг 4 раза в сутки, диклоксациллин 500 мг 4 раза в сутки, клиндамицин 300 мг 3 раза в сутки или фторхинолон.Цефалоспориновые антибиотики сегодня занимают одно из ведущих мест при лечении бактериальных инфекций. Широкий спектр микробной активности, хорошие фармакокинетические свойства, низкая токсичность, синергизм с другими антибиотиками - делают цефалоспорины препаратами выбора при многих инфекционно-воспалительных заболеваниях.К III поколению цефалоспоринов относятся препараты, обладающие высокой активностью в отношении семейства Enterobacte-riaceae. гемофильной палочки, гонококков, менингококков, и меньше - в отношении грамположительных микроорганизмов.Одним из представителей цефалоспоринов III-поколения является цефтриаксон (офрамакс. "Ranbaxy", Индия). Цефтриаксон имеет более широкий спектр антимикробной активности. Антибиотик обладает стабильностью по отношению к в - лактамазам и высокой проницаемостью через стенку грамотрицательных микроорганизмов.Заключение Проблема развития устойчивости бактерий к антибиотикам требует разработки антибактериальных препаратов с новыми механизмами действия. Белки клеточного деления могут быть кандидатами на роль мишеней для антибиотиков широкого спектра действия, так как почти все они необходимы для размножения, а, следовательно, и для существования бактериальных колоний.Хотя эти белки являются эволюционно консервативными среди бактерий, они различаются между собой и могут иметь незначительную гомологию с белками человека, что осложняет разработку безопасных антибиотиков широкого спектра действия.Для успешной разработки антибиотиков в будущем, помимо скринингов химических веществ, необходимо применять новые подходы, направленные на создание препаратов, действующих на известные потенциальные мишени.Широкомасштабные скрининги библиотек химических соединений позволили обнаружить несколько кандидатных молекул-ингибиторов клеточного деления. Ими оказались соединения, блокирующие функционирование наиболее консервативных белков клеточного деления: FtsZ и FtsA.В настоящий момент белки FtsZ и FtsA являются наиболее привлекательными мишенями для поиска антибактериальных препаратов. Так как в процессе деления клетки имеют место множественные межбелковые взаимодействия, умение оказывать влияние на эти взаимодействия может оказаться полезным для создания лекарственных препаратов.Технологии поиска веществ, влияющих на межбелковые взаимодействия, интенсивно развиваются и некоторые из них могут оказаться эффективными в поиске новых антибиотиков. Вместе с тем, наметившийся прогресс в области адресной доставки лекарств может повысить эффективность антибактериальных препаратов в будущем.Список литературы

    1. Альберт А. Избирательная токсичность. Физико-химические основы терапии: в двух томах / Пер. с англ. М.: Медицина, 1989.

    2. Альбертс Б., Брей Д., Льюис Дж. с соавт. Молекулярная биология клетки: в двух томах. М.: Мир, 1994.

    3. Белоусов Ю.Б., Моисеев В.С., Лепахин В.К. Клиническая фармакология и фармакотерапия. Руководство для врачей. М.: Универсум Паблишинг, 1997.

    4. Гаузе Г.Ф. Молекулярные основы действия антибиотиков. /Пер. с англ. М.: “Мир", 1975.

    5. Егоров Н.С. Основы учения об антибиотиках. М.: Высшая школа, 1986.

    6. Елинов Н.П. Химическая микробиология. М.: Высшая школа, 1989.

    7. М.Д. Машковский. Лекарственные средства. М., 1993, т.1, с.313-314.

    8. Материалы научно-практической конференции “Антибактериальные препараты в практике терапевта". СПб., 16-17 мая 2000.

    9. Михайлов И.Б. Клиническая фармакология. СПб.: Фолиант, 1999.

    10. Страчунский Л.С., Козлов С.Н. Антибиотики: клиническая фармакология. Смоленск: Амипресс, 1994.

    11. Яковлев В.П. Антибактериальная химиотерапия в неинфекционной клинике: новые беталактамы, монобактамы и хинолоны. // Итоги науки и техники. Москва, 1992, 201 стр.


    Для цитирования: Сидоренко С.В., Яковлев С.В. БЕТА-ЛАКТАМНЫЕ АНТИБИОТИКИ // РМЖ. 1997. №21. С. 2

    В статье представлены подробный анализ наиболее многочисленной группы антибактериальных средств - бета-лактамных антибиотиков, их классификация и микробиологическая характеристика. Приведены рекомендации по их применению в клинической практике.

    The paper presents a detailed analysis of the most numerous group of antibacterial agents, b-lactam antibiotics, their classification and microbiological characteristics. Recommendations of their clinical use are given

    С.В. Сидоренко, кафедра микробиологии и клинической химиотерапии Российской медицинской академии последипломного образования
    С.В. Яковлев, кафедра клинической гематологии и интенсивной терапии Московской медицинской академии им. И.М.Сеченова
    S.V. Sidorenko, Department of Microbiology and Clinical Chemotherapy, Russian Medical Academy of Postgraduate Training
    S.V. Yakovlev, Department of Clinical Hematology and Intensive Care Therapy, I.M. Sechenov Moscow Medical Academy

    1. Классификация и микробиологическая характеристика бета-лактамных антибиотиков (БЛА)

    БЛА являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов - это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов. Классификация современных БЛА (основанная на их химической структуре) и препараты, зарегистрированные в Российской Федерации, приведены в табл.1.
    1.1. Механизмы действия БЛА и устойчивости к ним микроорганизмов

    Общим фрагментом в химической структуре БЛА является бета-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов. Схематическое изображение механизмов действия БЛА и устойчивости к ним микроорганизмов приведено на рисунке.

    Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название - пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.
    Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
    Таблица 1. Классификация современных БЛА

    I. Пенициллины
    1. Природные: бензилпенициллин, феноксиметилпенициллин
    2. Полусинтетические
    2.1. Пенициллиназостабильные 2.2. Аминопенициллины 2.3.Карбоксипенициллины 2.4. Уреидопенициллины
    метициллин ампициллин карбенициллин азлоциллин
    оксациллин амоксициллин тикарциллин мезлоциллин
    пиперациллин
    II.Цефалоспорины
    I поколение II поколение III поколение IV поколение
    Парентеральные Парентеральные Парентеральные Парентеральные
    цефалотин цефуроксим цефотаксим цефпиром
    цефалоридин цефамандол цефтриаксон цефипим
    цефазолин цефокситин* цефодизим
    Оральные цефотетан* цефтизоксим
    цефалексин цефметазол* цефоперазон**
    цефадроксил Оральные цефпирамид**
    цефрадин цефаклор цефтазидим**
    цефуроксим-аксетил моксалактам
    Оральные
    цефиксим
    цефподоксим
    цефтибутен
    III. Комбинированные препараты IV. Карбапенемы V. Монобактамы
    ампициллин/сульбактам имипенем азтреонам
    амоксициллин/клавуланат меропенем
    тикарциллин/клавуланат
    пиперациллин/тазобактам
    цефоперазон/сульбактам
    П р и м е ч а н и е: *препараты, обладющие выраженной антианаэробной активностью (цефамицины);
    **препараты, обладающие выраженной активностью в отношении P. aeruginosa и неферментирущих микроорганизмов.

    Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки.
    Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду.
    К практически важным свойствам бета-лактамаз относятся:
    Субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).
    Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона.
    Тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции).
    Чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование). В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам. К сожалению, далеко не все известные бета-лактамазы чувствительны к их действию.
    Среди многообразия бета-лактамаз необходимо выделить несколько групп, имеющих наибольшее практическое значение
    (табл. 2). Более подробную информацию о современной классификации бета-лактамаз и их клиническом значении можно найти в обзорах .

    Поскольку пептидогликан (мишень действия БЛА) является обязательным компонентом микробной клетки, все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность БЛА ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при концентрациях антибиотиков, реально достижимых в организме человека, то говорят о природной устойчивости микроорганизма. Однако истинной природной резистентностью к БЛА обладают только микоплазмы, так как у них отсутствует пептидогликан - мишень дейтсвия антибиотиков.
    Кроме уровня природной чувствительности (или резистентности), клиническую эффективность БЛА определяет наличие у микроорганизмов приобретенной устойчивости. Приобретенная резистентность формируется при изменении одного из параметров, определяющих уровень природной чувствительности микроорганизма. Ее механизмами могут быть:
    I. Снижение аффинности ПСБ к антибиотикам.
    II. Снижение проницаемости внешних структур микроорганизма.
    III. Появление новых бета-лактамаз или изменение характера экспрессии имеющихся.
    Перечисленные эффекты являются результатом различных генетических событий: мутаций в существующих генах или приобретением новых.

    1.2. Характеристика микробиологической активности БЛА и область их применения

    Грамположительные микроорганизмы

    Подавляющее большинство БЛА обладает высокой активностью в отношении грамположительных микроорганизмов, единственным исключением является группа монобактамов.
    Streptococcus spp. отличаются высоким уровнем чувствительности к БЛА. При этом наиболее активны природные пенициллины, что дает основание признать их средствами выбора при лечении стрептококковых инфекций. Между отдельными представителями полусинтетических пенициллинов и цефалоспоринов отмечают определенные различия в уровне активности, однако оснований считать их клинически значимыми нет.
    Среди S. pyogenes до сих пор не обнаружено ни одного штамма, устойчивого к пенициллину и соотвественно к другим БЛА. Среди других стрептококков частота резистентности подвержена значительным вариациям. Во всех случаях она связана с модификацией ПСБ, продукции бета-лактамаз у стрептококков не выявлено. Наибольшее практическое значение имеет распространение пенициллинрезистентных пневмококков в отдельных географических регионах (Испания, Франция, Венгрия), частота различной степени устойчивости достигает 60% . Масштабных, методологически корректных исследований о распространении устойчивости к пенициллину среди пневмококков на территории РФ не проводилось, однако ограниченные данные не дают оснований рассматривать в настоящее время этот феномен как серьезную проблему. Это не означает
    , что ситуация не может измениться в худшую сторону уже в ближайшее время. В некоторых сообщениях отмечается тенденция к повышению частоты резистентности к пенициллину среди стрептококков групп В и Viridans , однако в целом находки таких штаммов остаются весьма редкими.
    Таблица 2. Характеристика основных бета-лактамаз

    Ферменты Характеристика
    Стафилококковые бета-лактамазы, плазмидные, класс А Гидролизуют природные и полусинтетические пенициллины, кроме метициллина и оксациллина.
    Чувствительны к ингибиторам.
    Плазмидные бета-лактамазы грамоотрицательных бактерий широкого спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения.
    Чувствительны к ингибиторам.
    Плазмидные бета-лактамазы грамоотрицательных бактерий расширенного спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - IV поколений.
    Чувствительны к ингибиторам.
    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс С Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - III поколений.
    Не чувствительны к ингибиторам.
    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс А Гидролизуют природные и полусинтетические пенициллины цефалоспорины I - II поколений. Чувствительны к ингибиторам.
    Хромосомные бета-лактамазы грамоотрицательных бактерий, класс В Эффективно гидролизуют практически все бета-лактамы, включая карбапенемы. Не чувствительны к ингибиторам.

    Предсказать чувствительность или устойчивость пенициллинрезистентных стрептококков к другим БЛА достаточно сложно. Часто активность сохраняют цефалоспорины III поколения, карбапенемы активны практически всегда. Полусинтетические пенициллины и цефалоспорины I - II поколений чаще всего неактивны . Поскольку резистентность у стрептококков не связана с продукцией бата-лактамаз, защищенные препараты преимуществ не имеют. Наиболее полно вопросы перекрестной резистентности к БЛА изучены для пневмококков . В настоящее время признано целесообразным при обнаружении штамма пневмококков, устойчивого к пенициллину, оценивать его чувствительность к другим БЛА методом серийных разведений.
    Enterococcus spp. отличаются значительно меньшей чувствительностью к БЛА, чем другие грамположительные микроорганизмы, что связано с пониженной аффинностью их ПСБ к этим антибиотикам . Для энтерококков характерны выраженные межвидовые различия в чувствительности к БЛА, наибольшая чувствительность свойственна E. faecalis. E. faecium и другие редкие виды энтерококков следует считать природно устойчивыми, они синтезируют значительное количество ПСБ , отличающегося низкой аффинностью к БЛА .
    Из всех БЛА клинически значимой антиэнтерококковой активностью (в отношении E. faecalis) обладают природные, амино-, уреидопенициллины, частично цефалоспорины IV поколения и карбапенемы. Цефалоспорины I - III поколений реальной активностью не обладают. Препаратами выбора для лечения энтерококковых (E. faecalis) инфекций являются аминопенициллины. Важно отметить, что БЛА в отношении энтерококков проявляют
    только бактериостатическую активность, бактерицидное действие проявляется только при комбинации с аминогликозидами.
    Staphylococcus spp. (как S. aureus, так и коагулазонегативные) проявляют высокий уровень природной чувствительности к БЛА, наименьшими величинами минимальной подавляющей концентрации (МПК) отличаются природные и аминопенициллины. В ряду цефалоспоринов от I к III поколению наблюдается некоторое снижение активности, однако клинического значения это не имеет. Исключением являются оральные цефалоспорины цефиксим и цефтибутен, они практически лишены антистафилококковой активности.
    Стафилококки оказались первыми микроорганизмами, распространение приобретенной резистентности среди которых привело к резкому снижению эффективности традиционной терапии.

    Механизм действия бета-лактамных антибиотиков. Обязательным компонентом наружной мембраны прокариотических микроорганизмов (кроме микоплазм) является пептидогликан, представляющий собой биологический полимер, состоящий из параллельных полисахаридных цепей. Пептидогликановый каркас приобретает жесткость при образовании между полисахаридными цепями поперечных сшивок. Поперечные сшивки образуются через аминокислотные мостики, замыкание сшивок осуществляют ферменты карбокси- и транспептидазы (ПСБ). Бета-лактамные антибиотики способны связываться с активным центром фермента и подавлять его функцию. Специфическая активность антибиотиков определяется наличием бета-лактамного кольца. Боковые радикалы определяют фармакокинетические особенности, устойчивость к действию бета-лактамаз и другие второстепенные свойства.

    После внедрения в 40-х годах в медицинскую практику пенициллина менее чем через 10 лет частота резистентности к этому антибиотику в отдельных стационарах достигла 50%, а в настоящее время практически повсеместно, в том числе и в РФ, превышает 60 - 70% . Устойчивость оказалась связанной с продукцией плазмидных бета-лактамаз, ее удалось сравнительно легко преодолеть путем создания полусинтетических пенициллинов (метициллина и оксациллина), а также цефалоспориновых антибиотиков, устойчивых к ферментативному гидролизу. Амино-, карбокси- и уреидопенициллины разрушаются этими ферментами так же эффективно, как и природные пенициллины, иногда наблюдают частичный гидролиз цефалоспоринов III поколения. Стафилококковые бета-лактамазы эффективно подавляются ингибиторами, что обеспечивает высокую активность защищенных пенициллинов.
    Однако уже в 1961 г. появились первые сообщения о выделении метициллинрезистентных стафилококков (МРС), как Staphylococcus aureus, так и коагулазонегативных . Резистентность оказалась связанной с появлением у микроорганизма нового ПСБ (ПСБ2а, или ПСБ2"), отсутствующего у чувствительных штаммов и обладающего пониженной аффинностью ко всем БЛА. Поскольку на практике для детекции метициллинрезистентности обычно используют оксациллин (он более стабилен при хранении), то появился термин-синоним "оксациллинрезистентность".
    Таблица 3. Характеристика природной активности бета-лактамных антибиотиков и частоты приобретенной резистентности основных клинически значимых микроорганизмов

    Микроорганизмы Природные пеницил лины Пеницил линазо стабиль ные пени циллины Амино пеницил лины Карбок сипени циллины Уреидо пенициллины Защищен ные пени циллины Цефа лоспори ны I поко ления Цефа лоспори ны II поко ления Цефа лоспори ны III поко ления Цефа лоспори ны IV поко ления Моно бактамы Карба пенемы
    Streptococcus
    -pyogenes
    -pneumoniae
    -agalactiae
    -viridans group
    Enterococcus faecalis
    Enterococcus faecium
    Staphylococcus spp. (MS)
    Staphylococcus spp. (MR)
    Neisseria spp.
    Moraxella spp.
    E.coli, Shigella spp.
    Salmonella spp., Proteus mirabilis
    Haemophilus spp.
    Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii , P.rettgeri.
    Pseudomonas spp.
    Bacteroides fragilis
    П р и м е ч а н и е: ++ - высокая активность; + - реальная активность; +/- - слабая активность; - - отсутствие активности; r - частота приобретенной резистентности от единичных штаммов до 5 - 10%; R - частота приобретенной резистентности от 10 до 50%; r-R - частота приобретенной резистентности между отдельными видами в группе существенно варьирует, существенная вариабельность в географическом распространении резистентности; MS - метициллинчувствительные стафилококки; MR - метициллинрезистентные стафилококки; 1) - реальной антианаэробной активностью обладают цефотетан, цефокситин, цефметазол; 2) - реальной антипсевдомонадной активностью обладают цефтазидим, цефоперазон, цефпирамид.

    При исследованиях in vitro в отношении некоторых штаммов МРС цефалоспорины и карбапенемы проявляют достаточно высокую активность. Формально по величине МПК или диаметру зоны ингибиции роста такие штаммы следует оценивать как чувствительные. Однако клинические исследования показали, что при наличии метициллинрезистентности эффективность всех БЛА значительно снижается независимо от их активности in vitro . Учитывая эти наблюдения, общепринятой точкой зрения по интерпретации результатов оценки антибиотикочувствительности стафилококков является следующая:
    при детекции у стафилококков устойчивости к оксациллину ни один из БЛА (независимо от их активности in vitro) не может быть рекомендован для лечения.
    Оценка чувствительности к оксациллину является ключевым моментом в планировании лечения стафилококковых инфекций.
    Таким образом:

    1. При инфекциях, вызванных штаммами, чувствительными к оксациллину и не продуцирующими бета-лактамазы (что в настоящее время наблюдается редко), препаратами выбора являются природные пенициллины.
    2. Если этиологический агент продуцирует бета-лактамазы, но сохраняет чувствительность к оксациллину, последний антибиотик является препаратом выбора. Практически равную эффективность будут проявлять защищенные пенициллины, цефалоспорины и карбапенемы.
    3. При выявлении оксациллинрезистентных штаммов применение БЛА должно быть исключено. В связи с высокой частотой ассоциированной устойчивости таких штаммов к антибиотикам других групп (макролидам, фторхинолонам, аминогликозидам и др.) перечень альтернативных препаратов ограничен. В части случаев активность могут сохранять рифампин и фузидиевая кислота, за крайне редкими исключениями (известны единичные устойчивые штаммы S. haemoliticus) активны гликопептидные антибиотики.

    Грамотрицательные микроорганизмы

    Грамотрицательные кокки

    Neisseria (meningitidis, gonorrhoeae) и Moraxella обладают высокой природной чувствительностью к БЛА. Их внешняя мембрана проницаема не только для цефалоспоринов и полусинтетических пенициллинов, но и для природных (по этому признаку перечисленные микроорганизмы отличаются от других грамотрицательных). Традиционно препаратами выбора при лечении вызванных этими микроорганизмами инфекций считаются природные пенициллины, однако цефалоспорины (прежде всего III поколения) по уровню микробиологической активности им не уступают. Достаточно активны полусинтетические пенициллины, кроме оксациллина и метициллина.
    В частоте распространения приобретенной резистентности, связанной с продукцией плазмидных бета-лактамаз класса А, среди грамотрицательных кокков наблюдают выраженные различия. Чаще всего продукцию плазмидных бета-лактамаз широкого спектра выявляют у Moraxella cattarhalis (до 60 - 80% штаммов), ферменты гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения . Остальные БЛА (цефалоспорины II - III поколений, защищенные пенициллины, карбапенемы и монобактамы) сохраняют высокую активность.
    Отмечается нарастание частоты продукции бета-лактамаз c аналогичными описанным ранее свойствами у N. gonorrhoeae, что снижает роль пенициллина как средства выбора при лечении гонореи и выдвигает на первое место цефалоспорины III поколения .
    В отличие от сказанного выше у N. meningitidis продукцию бета-лактамаз выявляют крайне редко, описаны штаммы со сниженной чувствительностью к пенициллину, обусловленной модификацией ПСБ и снижением проницаемости наружной мембраны. Значение пенициллина как средства выбора при лечении менингококковой инфекции сохраняется .

    Грамотрицательные бациллы

    Характеризуя природную активность БЛА в отношении грамотрицательных палочек (Enterobacteriaceae, Pseudomonas и др.), необходимо остановиться на некоторых особенностях этих микроорганизмов. Прежде всего, так как их наружная мембрана малопроницаема для природных пенициллинов, то в лечении соответствующих инфекций указанные антибиотики значения не имеют.
    Вторым принципиально важным свойством грамотрицательных палочек является наличие в составе их хромосом генов, кодирующих бета-лактамазы класса А или С. Хромосомные бета-лактамазы не выявлены у микроорганизмов рода Salmonella.
    Именно способностью к синтезу хромосомных бета-лактамаз и его характером (конститутивным или индуцибельным) определяется уровень природной чувствительности грамотрицательных бацилл к БЛА. В зависимости от типа экспрессии хромосомных бета-лактамаз микроорганизмы можно разделить на несколько групп.
    E.coli, Shigella spp., Salmonella spp., Proteus mirabilis, Haemophilus spp. относятся к первой группе, у них продукция хромосомных бета-лактамаз класса С или не определяется, или выявляется в минимальном количестве (конститутивно низкий уровень продукции). Они обладают природной чувствительностью ко всем БЛА, кроме природных и полусинтетических пенициллиназостабильных пенициллинов, чувствительность к цефалоспоринам I поколения варьирует. Haemophilus spp. к цефалоспоринам I поколения не чувствительны.
    Однако реальная активность амино-, карбокси-, уреидопенициллинов и цефалоспоринов I поколения ограничена распространением приобретенной резистентности, связанной с продукцией бета-лактамаз широкого спектра. Частота их выявления у E.coli. Proteus mirabilis на территории РФ в некоторых случаях (особенно при госпитальных инфекциях) достигает 50%. Защищенные пенициллины сохраняют активность в отношении таких штаммов. Таким образом, в зависимости от тяжести и характера инфекции (госпитальная или внебольничная) средствами выбора для эмпирического лечения инфекций, вызванных микроорганизмами этой группы, могут быть защищенные пенициллины или цефалоспорины II - III поколений.
    Следует отметить, что при шигеллезе и кишечном сальмоонеллезе реальное клиническое значение из бета-лактамов имеют только аминопенициллины, однако их роль в связи с распространением бета-лактамаз широкого спектра снижается, реальной альтернативой являются фторхинолоны. Средствами выбора для лечения генерализованного сальмонеллеза из БЛА следует считать цефалоспорины III поколения (бета-лактамазы расширенного спектра, гидролизующие эти антибиотики, до сих пор встречаются редко
    ).
    Klebsiella spp., Proteus vulgaris, Citrobacter diversus также конститутивно продуцируют незначительное количество хромосомных бета-лактамаз, относящихся к классу А. Несмотря на низкий уровень продукции, эти ферменты гидролизуют амино-, карбокси- и частично уреидопенициллины, а также цефалоспорины I поколения. Бета-лактамазы P. vulgaris эффективно гидролизуют цефалоспорины II поколения. Таким образом, реальной природной чувствительностью перечисленные микроорганизмы обладают к цефалоспоринам III - IV поколений, защищенным пенициллинам, монобактамам и карбапенемам.
    Основным механизмом приобретенной резистентности является продукция плазмидных бета-лактамаз широкого и расширенного спектра. Последние ограничивают активность не только полусинтетических пенициллинов, но и цефалоспоринов III - IV поколений. Достаточно часто возникают вспышки госпитальных инфекций, вызванных штаммами Klebsiella spp. и другими микроорганизмами, продуцирующими указанные бета-лактамазы, при этом наблюдают интенсивное межвидовое распространение детерминант резистентности . Лечение таких инфекций осложняется тем, что стандартные методы оценки антибиотикочувствительности в значительной части случаев (до 30%) не выявляют этот механизм резистентности . В настоящее время вопрос о том, насколько защищенные пенициллины эффективны в отношении инфекций, вызываемых штаммами, продуцирующими бета-лактамазы расширенного спектра, не решен.
    В общем, при внебольничных инфекциях, вызываемых данной группой микроорганизмов, цефалоспорины III поколения являются высокоэффективными средствами, прогнозирование же их эффективности при госпитальных инфекциях без лабораторных исследований весьма затруднительно. Ситуация осложняется и тем, что у клебсиелл уже описана устойчивость к карбапенемам
    .
    Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii и P.rettgeri (типичные госпитальные патогены) являются одной из наиболее сложных групп для лечения БЛА. У этих микроорганизмов выявляется индуцибельная продукция хромосомных бета-лактамаз класса С. Поскольку большинство БЛА разрушаются указанными ферментами, уровень природной чувствительности бактерий определяется способностью антибиотиков индуцировать синтез. Так как аминопенициллины, цефалоспорины I поколения относятся к сильным индукторам, то микроорганизмы к ним устойчивы. Цефалоспорины II поколения в меньшей степени индуцируют хромосомные бета-лактамазы класса С, уровень их активности близок к промежуточному, но считать их средствами выбора для лечения инфекций, вызываемых рассматриваемой группой микроорганизмов, нельзя. Цефалоспорины III - IV поколений, монобактамы, карбокси- и уреидопенициллины в незначительной степени индуцируют синтез хромосомных бета-лактамаз и, следовательно, проявляют высокую активность. Карбапенемы относятся к сильным индукторам, но обладают устойчивостью к действию ферментов, что проявляется в их высокой природной активности.
    Из механизмов приобретенной резистентности в рассматриваемой группе микроорганизмов основное значение имеют плазмидные бета-лактамазы широкого и расширенного спектра, а также гиперпродукция хромосомных бета-лактамаз. Феномен гиперпродукции связан с мутациями в регуляторных областях генома, приводящих к дерепрессии синтеза фермента. Особое значение этого механизма устойчивости объясняется тем, что он с достаточно высокой частотой формируется в процессе лечения цефалоспоринами III поколения пациентов с тяжелыми госпитальными пневмониями или бактериемией, вызываемой Enterobacter spp. и Serratia marcescens (селекция мутантов-гиперпродуцентов на фоне элиминации чувствительных микроорганизмов) . Единственными БЛА, сохраняющими активность в отношении штаммов-гиперпродуцентов, являются цефалоспорины IV поколения и карбапенемы.
    Многообразие возможных механизмов резистентности у рассматриваемой группы патогенов и возможность их сочетаний крайне затрудняют планирование эмпирической терапии. На сегодняшний день даже карбапенемы невозможно рассматривать как препараты, обладающие абсолютной активностью (описаны единичные штаммы S. marcescens и Enterobacter, обладающие устойчивостью к карбапенемам в результате продукции карбапенемаз ).

    Неферментирующие микроорганизмы

    К микроорганизмам, обладающим природной устойчивостью ко многим БЛА, относятся Pseudomonas spp. (прежде всего P. aeruginosa), Acinetobacter spp. и другие неферментирующие бактерии, что связано с низкой проницаемостью их внешних структур и продукцией хромосомных бета-лактамаз класса С. Активностью в отношении P. aeruginosa обладают карбокси- и уреидопенициллины, некоторые из цефалоспоринов III поколения (цефтазидим, цефоперазон, цефпирамид), монобактамы и карбапенемы (меропенем несколько превосходит имипенем). Приобретенная резистентность этих микроорганизмов может быть связана со многими механизмами: продукцией плазмидных бета-лактамаз широкого и расширенного спектров, металлоэнзимов, гиперпродукцией хромосомных бета-лактамаз и снижением проницаемости, часто наблюдают сочетание нескольких механизмов. На практике это приводит к появлению и распространению штаммов, устойчивых ко всем БЛА. Среди псевдомонад возможно формирование изолированной устойчивости к имипенему , связанной с нарушением структуры порина D2, являющегося уникальным путем для транспорта этого антибиотика; такие штаммы часто сохраняют чувствительность к меропенему.
    В определенных условиях (чаще в отделениях интенсивной терапии и реанимации) на фоне применения карбапенемов, обладающих максимально широким спектром действия, в результате элиминации чувствительных микроорганизмов возможна селекция видов, продуцирующих бета-лактамазы класса В (металлоэнзимы) и, как следствие, проявляющих природную устойчивость к этим антибиотикам. К таким микроорганизмам относятся Stenotphomonas maltophillia, некоторые виды Flavobacterium.

    Анаэробные микроорганизмы

    Bacteroides fragilis и родственные микроорганизмы проявляют достаточно высокую природную устойчивость к БЛА. Большинство других анаэробов высокочувствительны к БЛА, в том числе и к природным пенициллинам. Clostridium difficile устойчивы ко всем БЛА.
    Устойчивость B. fragilis в основном определяется продукцией этими микроорганизмами хромосомных бета-лактамаз класса А. Благодаря устойчивости к гидролизу цефамициновые антибиотики (цефотетан, цефокситин и цефметазол) обладают клинически значимой антианаэробной активностью. Высокоактивны также защищенные бета-лактамы и карбапенемы, случаи приобретенной устойчивости к ним крайне редки.
    Перед рассмотрением клинического применения БЛА необходимо отметить, что если для внебольничных инфекций уровень и механизмы приобретенной резистентности этиологических агентов могут быть достаточно точно предсказаны для обширных географических регионов на основании специальных исследований, то при госпитальных инфекциях эти показатели могут быть уникальными для отдельных стационаров даже в пределах одного города. Следовательно, если при внебольничных инфекциях обоснование эффективной эмпирической терапии представляется вполне реальной задачей, то при госпитальных инфекциях вероятность эффективности эмпирической терапии резко снижается и соответственно возрастает значение лабораторных исследований.

    2. Клиническое применение БЛА

    Природные пенициллины

    Являются препаратами выбора при лечении стрептококковой, пневмококковой, менингококковой и гонококковой инфекций. В последние годы отмечается увеличение частоты резистентных штаммов пневмококков и гонококков к бензилпенициллину, в связи с чем при эмпирической терапии заболеваний, вызванных этими микроорганизмами, рекомендуется использовать другие препараты (цефалоспорины III поколения, макролиды); бензилпенициллин может применяться при установленной к нему чувствительности S. pneumoniae и N. gonorrhoeae.
    Бензилпенициллин выпускается в виде натриевой и калиевой солей для парентерального введения (антибиотик при приеме внутрь разрушается кислотой желудочного сока). Калиевая соль бензилпенициллина содержит большое количество калия (1,7 мэкв в 1 млн ЕД), в связи с чем большие дозы этой лекарственной формы пенициллина нежелательны у больных с почечной недостаточностью. Бензилпенициллин быстро выводится из организма, поэтому требуется частое введение препарата (от 4 до 6 раз в сутки в зависимости от тяжести инфекции и дозы). Большие дозы бензилпенициллина (20 - 30 млн ЕД в сутки) применяются для лечения тяжелых инфекций, вызванных чувствительными к нему микроорганизмами: менингита, инфекционного эндокардита, газовой гангрены. Средние дозы препарата (10 - 18 млн ЕД в сутки) применяются при лечении аспирационной пневмонии или абсцесса легких, вызванного стрептококкоками группы А или анаэробными кокками, а также в комбинации с аминогликозидами при лечении энтерококковой инфекции (эндокардит). Малые дозы бензилпенициллина (4 - 8 млн ЕД в сутки) применяются при лечении пневмококковой пневмонии.
    Бензилпенициллин в больших дозах может также назначаться при инфекции, вызванной Listeria, однако в этом случае предпочтительнее использовать ампициллин. Не рекомендуется применять бензилпенициллин в суточных дозах свыше 30 млн ЕД из-за риска развития токсических проявлений со стороны центральной нервной системы (судороги).
    Пролонгированные препараты пенициллина (бензатинпенициллин или бициллин) применяются для профилактики ревматизма и лечения сифилиса.
    Феноксиметилпенициллин не разрушается соляной кислотой желудка, его назначают внутрь. По сравнению с бензилпенициллинами менее активен при гонорее. Применяют в амбулаторной практике, как правило, у детей при лечении легких инфекций верхних дыхательных путей (тонзиллит, фарингит), полости рта, пневмококковой пневмонии.

    Пенициллиназостабильные пенициллины

    Спектр противомикробного действия этих препаратов сходен с природными пенициллинами, однако они уступают им в антимикробной активности. Единственным преимуществом является стабильность в отношении стафилококковых бета-лактамаз, в связи с чем эти полусинтетические пенициллины считаются препаратами выбора при лечении доказанной или предполагаемой стафилококковой инфекции (кожи и мягких тканей, костей и суставов, при эндокардите и абсцессе мозга). Метициллин в настоящее время не рекомендуется к использованию в клинической практике, так как у 2 - 10% больных приводит к развитию интерстициального нефрита. Оксациллин, не уступая в противомикробной активности метициллину, лучше переносится. При приеме оксациллина внутрь в крови создаются не очень высокие концентрации, поэтому его следует применять только парентерально, а для перорального применения предпочтительнее использовать клоксациллин или диклоксациллин. Прием пищи уменьшает всасывание этих препаратов, поэтому их предпочтительно принимать до еды. Оксациллин, клоксациллин и диклоксациллин выводятся с мочой и желчью, поэтому у больных с почечной недостаточностью не наблюдается существенного замедления выведения этих препаратов и их можно назначать в неизмененных дозах.

    Аминопенициллины

    Ампициллин и амоксициллин характеризуются одинаковым спектром антимикробной активности. Ампициллин применяется парентерально и внутрь, амоксициллин - только внутрь. Ампициллин плохо всасывается при приеме внутрь (биодоступность составляет 20 - 40%), в связи с чем в крови и тканях создаются не очень высокие концентрации; кроме того, прием пищи существенно уменьшает всасывание ампициллина. Амоксициллин значительно лучше всасывается (биодоступность составляет 80 - 70%) независимо от приема пищи, в крови и тканях создаются более высокие и стабильные концентрации.
    Амоксициллин медленнее выводится из организма, поэтому требует более редкого дозирования (каждые 8 ч) по сравнению с ампициллином (каждые 6 ч). Кроме того, амоксициллин реже вызывает кишечный дисбактериоз и диарею. В связи с указанными преимуществами при назначении препарата внутрь для лечения нетяжелых инфекций предпочтительнее использовать амоксициллин.
    Ампициллин применяется в основном парентерально при лечении острых неосложненных внебольничных инфекций дыхательных и мочевыводящих путей, в комбинации с аминогликозидами - при лечении серьезных инфекций, вызванных энтерококками (эндокардит, сепсис), менингококками, гемофильной палочкой и листериями (менингит). Внутрь ампициллин назначается при лечении бактериальной дизентерии.
    Амоксициллин считается препаратом первого ряда в амбулаторной практике при лечении острых инфекций ЛОР-органов (синусит, средний отит), нижних дыхательных путей (острый бактериальный бронхит, внебольничная бактериальная пневмония), мочевыводящих путей (острый цистит, острый пиелонефрит, бессимптомная бактериурия), некоторых кишечных инфекций (брюшной тиф, сальмонеллез), а также при стоматологических вмешательствах в качестве профилактики бактериального эндокардита.
    Аминопенициллины нецелесообразно назначать для лечения хронических или госпитальных инфекций дыхательных или мочевыводящих путей, так как отмечается увеличение частоты устойчивых штаммов микробов к этим препаратам. В этом случае предпочтительнее использовать комбинированные препараты аминопенициллинов с ингибиторами бета-лактамаз - ко-амоксиклав (амоксициллин + клавулановая кислота) или ампициллин + сульбактам.

    Антисинегнойные пенициллины

    В зависимости от химической структуры выделяют карбоксипенициллины (карбенициллин, тикарциллин) и уреидопенициллины (пиперациллин, азлоциллин, мезлоциллин). Антимикробная активность карбоксипенициллинов и уреидопенициллинов одинакова, за исключением Klebsiella spp. (более активны последние). Отличительной характеристикой антимикробного спектра этих пенициллинов является активность в отношении P. aeruginosa. По действию на синегнойную палочку эти препараты располагаются в следующем порядке:
    азлоциллин = пиперациллин > мезлоциллин = тикарциллин > карбенициллин.

    Основными показаниями для назначения карбоксипенициллинов и уреидопенициллинов являются тяжелые госпитальные инфекции различной локализации (дыхательных путей, мочевыводящих путей, интраабдоминальные, гинекологические), вызванные чувствительными микроорганизмами. Наиболее часто эти препараты (в комби


    Мишенью действия бета-лактамных антибиотиков в микробной клетке являются транспептидазы и карбоксипептидазы – ферменты, участвующие в синтезе основного компонента наружной мембраны грамположительных и грамотрицательных микроорганизмов – пептидогликана. Благодаря способности связываться с пенициллинами и другими бета-лактамами эти ферменты получили второе название – пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки. Они осуществляют образование поперечных сшивок.
    Связывание бета-лактамных антибиотиков с ПСБ ведет к инактивации ПСБ, прекращению роста и последующей гибели микробной клетки. Таким образом, активность конкретных бета-лактамных антибиотиков в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
    Однако для взаимодействия с ПСБ антибиотик должен проникнуть через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии бета-лактамов. Практически непреодолим для диффузии бета-лактамов липополисахаридный слой в наружной мембране грамотрицательных бактерий. Единственным путем для диффузии бета-лактамов служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы и становятся основным путем транспорта питательных веществ внутрь бактериальной клетки. Чем больше молекул антибиотика, тем медленнее его диффузия через пориновые каналы.
    Доступ бета-лактамных антибиотиков к мишени ограничивают также ферменты бета-лактамазы, гидролизующие антибиотики. В результате межвидового генного переноса бета-лактамазы широко распространены у различных микроорганизмов, в том числе патогенных.

    У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, между наружной и внутренней мембранами, а у грамположительных они свободно диффундируют в окружающую среду.
    К практически важным свойствам бета-лактамаз относятся:
    1. субстратный профиль – способность к преимущественному гидролизу тех или иных бета-лактамов, например, пенициллинов или цефалоспоринов, или карбапенемов, либо тех и других в равной степени.
    2. локализация кодирующих генов, плазмидная или хромосомная. Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной – наблюдают распространение резистентного клона;
    3. тип экспрессии – конститутивный или индуцибельный. При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном – количество синтезируемого фермента резко возрастает после контакта с антибиотиками (индукция);
    4. чувствительность к ингибиторам. К ингибиторам бета-лактамаз относятся вещества бета-лактамной природы с минимальной собственной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование).
    В результате при одновременном применении бета-лактамов и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название ингибиторзащищенных бета-лактамов.
    В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам, тазобактам. Однако далеко не все известные бета-лактамазы чувствительны к ним.
    Можно выделить несколько групп бета-лактамаз, имеющих наибольшее практическое значение.


    Таким образом, индивидуальные свойства отдельных бета-лактамов определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.
    Поскольку пептидогликан (мишень действия бета-лактамных антибиотиков) является обязательным компонентом микробной клетки (кроме микоплазм), все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность бета-лактамов ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при практически достижимых концентрациях антибиотиков, то говорят о природной устойчивости микроорганизма. Истинной природной резистентностью к бета-лактамам обладают только микоплазмы, так как у них отсутствует пептидогликан.
    Кроме природной чувствительности (или резистентности), клиническую эффективность бета-лактамов определяет приобретенная устойчивость. Она формируется при изменениях одного из параметров, определяющих природную чувствительность микроорганизма. Механизмами приобретенной устойчивости могут быть:
    1. снижение аффинности ПСБ к антибиотикам;
    2. снижение проницаемости внешних структур микроорганизма;
    3. появление новых бета-лактамаз или изменение экспрессии имеющихся.
    Все эти эффекты становятся результатом различных генетических событий: мутаций в существующих генах или приобретения новых.

    • Всасывание бета-лактамов различно. Некоторые пенициллины (бензилпенициллин, карбокси- и уреидопенициллины) нестабильны в кислой среде, поэтому практически не всасываются при приеме внутрь и применяются только парентерально. Среди цефалоспориновых антибиотиков выделяют ЛС для парентерального (низкое всасывание при приеме внутрь) и перорального применения, причем биодоступность последних существенно различается. В том числе в зависимости от приема пищи. Карбапенемы и монобактамы также имеют крайне низкую биодоступность при приеме внутрь. Показатели биодоступности бета-лактамов, а также другие параметры фармакокинетики представлены в таблице.

      • ЛС
        Доза (мг), способ применения
        F, %
        C max , мг/л
        T 1/2 , ч
        AUC, мг*ч/л
        СВ, %
        ВМ, %
        Влияние пищи на всасывание
        Биотрансформация, %
        Пенициллины
        Азлоциллин
        2000, в/в

        352
        1

        20-40
        60-70

        8-50
        Амоксициллин
        500, внутрь
        80
        16
        1
        29,2
        17
        50
        Нет
        10-20
        Ампициллин
        500, в/м
        500, внутрь
        40
        9
        5,1
        0,8
        0,8
        51,9
        12,1
        20
        20
        50
        50
        Снижение
        10-50
        10-50
        Бензилпенициллин
        500, в/м
        -
        4,5
        0,6
        13,7
        65
        48

        20-50
        Карбенициллин
        1000, в/м

        29,8
        1,5
        94,3
        50-60
        80

        10-30
        Клоксациллин
        500, внутрь
        50
        7,3
        0,8
        14,3
        95
        39
        Снижение
        40-50
        Оксациллин
        500, в/м
        500, внутрь
        30
        6,5
        2
        0,8
        0,6
        8,8
        3,6
        90
        90
        42
        20
        Снижение
        40-50
        40-50
        Пиперациллин
        1000, в/в

        70,7
        1
        36
        20-40
        70-80


        Тикарциллин
        750, в/м

        24,1
        1,2
        71,9
        45
        69,5

        5
        Феноксиметилпенициллин
        500, внутрь
        35
        3-3,6
        0,74
        5,3
        80
        50
        Снижение
        50-70
        Цефалоспорины I поколения
        Цефадроксил
        500, внутрь
        90
        15,4
        1,4
        49,4
        20
        79-84
        Нет
        1
        Цефазолин
        500, в/м

        47,1
        1,8
        18,6
        73-87
        66-74

        1
        Цефалексин
        500, внутрь
        90
        16,9
        0,8
        20,9
        20
        84
        Нет
        2
        Цефалоспорины II поколения
        Цефаклор
        500, внутрь
        50-95
        5,3
        0,8
        7
        25
        70
        Снижение
        5-15
        Цефамандол
        1000, в/м

        20,1
        0,85
        58
        56-78
        65-80

        2
        Цефокситин
        1000, в/в

        125
        0,5-0,8
        56,3
        65-79
        80-90

        5
        Цефуроксим
        500, в/м

        27,4
        1,2-1,5
        54,5
        33-50
        >90

        5
        Цефуроксим аксетил
        250, внутрь
        52
        6,3
        1,2
        18,9
        50
        50
        Увеличение

        Цефалоспорины III поколения
        Цефиксим
        400, внутрь
        50
        3,6
        3,1
        25,7
        65
        22-27
        Нет

        Цефоперазон
        1000, в/в

        125,8
        1,9-2,7
        409
        82-93
        14-27

        75
        Цефотаксим
        500, в/м

        15,4
        1,1
        31,4
        30-51
        55-65

        30-50
        Цефподоксим проксетил
        100, внутрь
        30-50
        1,34
        1,9
        7,8
        40
        44
        Увеличение

        Цефтазидим
        1000, в/в

        77,4
        1,9
        147,3
        89

        5
        Цефтибутен
        200, внутрь
        80
        9,3
        1,8-2
        43,7
        65-77
        78
        Снижение

        Цефтриаксон
        1000, в/в

        161,2
        6-8
        1005
        85-95
        54

        35-40
        Цефалоспорины IV поколения
        Цефепим
        1000, в/в

        74,9
        2
        153,7
        20
        75-90


        Карбапенемы
        Имипенем
        1000, в/в

        54,6
        1
        90,8
        20
        76


        Меропенем
        1000, в/в

        61,6
        1
        90,8
        2
        75


        Эртапенем
        1000, в/в

        160
        4

        60
        >80


        Монобактамы
        Азтреонам
        1000, в/в

        93,5
        1,8
        222
        55-60
        70-80

        30
      В крови бета-лактамы в различной степени связываются с белками плазмы, преимущественно альбуминами. Объем распределения бета-лактамов в среднем составляет около 20 л, что свидетельствует о проникновении ЛС в ткани. Концентрации бета-лактамов в большинстве тканей организма равны 30-70% сывороточных концентраций. Бета-лактамы не проникают внутрь клеток макроорганизма. Период полувыведения большинства бета-лактамов составляет около 2 ч, но имеются исключения: он больше у некоторых цефалоспоринов (цефтриаксон, цефотетан, цефиксим).
      Большинство бета-лактамов выводится с мочой в неизмененном виде, некоторые ЛС частично метаболизируются в печени (изоксозолинпенициллины, уреидопенициллины, цефалотин, цефотаксим, цефтриаксон, азтреонам). Цефоперазон в значительных количествах выводится с желчью.

    В большей степени пенициллины

    Реакции немедленного типа: анафилактический шок, ангионевротический отек, бронхоспазм.
    Отсроченные реакции: крапивница, зуд, эритема, артрит, эозинофилия, тромбоцитопения, васкулит
    Желудочно-кишечные
    Все бета-лактамы, особенно ампициллин, амоксициллин/клавуланат
    Тошнота, рвота, диарея
    Любые бета-лактамы (редко)
    Диарея, вызванная C. difficile, псевдомембранозный колит
    Печеночные
    Все бета-лактамы
    Повышение трансаминаз, щелочной фосфатазы
    Оксациллин, азтреонам
    Гепатит
    Цефтриаксон
    Желтуха, холелитиаз
    Интерстициальный нефрит
    Оксациллин
    Гематурия, протеинурия, лихорадка, эозинофилия
    Гематологические
    Карбоксипенициллины, некоторые цефалоспорины(цефамандол, цефотетан, цефоперазон, цефметазол)
    Геморрагический синдром
    Неврологические
    Все бета-лактамы
    Большие дозы пенициллинов
    Головная боль, головокружение, тремор
    Судороги
    Нарушение толерантности к алкоголю
    Некоторые цефалоспорины (цефамандол, цефотетан, цефоперазон, цефметазол)
    Дисульфирам-подобные реакции: тошнота, рвота, головная боль, головокружение, жар, тахикардия
    Суперинфекции
    Все бета-лактамы
    Вагинальный или оральный кандидоз