Какую роль выполняет карбоангидраза при накоплении со2. Транспорт углекислоты кровью

О и . Сегодня вы узнаете о том, как транспортируется углекислый газ в нашей крови.

Углекислый газ транспортируется кровью в трех формах. В венозной крови можно выявить около 58 об. % (580 мл/л) С02, причем из них лишь около 2,5 объемных % находятся в растворенном состоянии. Некоторая часть молекул С02 соединяется в эритроцитах с гемоглобином, образуя карбгемоглобин (приблизительно 4,5 об.%). Остальное количество С02 химически связано и содержится в виде солей угольной кислоты (приблизительно 51 об. %).

Углекислый газ является одним из самых частых продуктов химических реакций обмена веществ. Он непрерывно образуется в живых клетках и оттуда диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту (С02 + Н20 > Н2С03).

Этот процесс катализируется (ускоряется в двадцать тысяч (!) раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. соответственно - процесс соединение углекислого газа с водой происходит практически только в эритроцитах. Но это процесс обратимый, который может изменять свое направление. В зависимости от концентрации углекислого газа карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на углекислый газ и воду (в капиллярах легких): С02 + Н20 — Н2С03.

Благодаря указанным процессам связывания концентрация С02 в эритроцитах оказывается невысокой. Поэтому все новые количества С02 продолжают диффундировать внутрь эритроцитов. Если у Вас есть некрасивая родинка, то можно удалить родинку лазером! Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления - в результате во внутренней среде эритроцитов увеличивается количество воды. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Гемоглобин имеет большее сродство к кислороду, чем к углекислому газу - поэтому в условиях повышения парциального давления кислорода карбогемоглобин превращается сначала в дезоксигемоглобин, а затем - в оксигемоглобин.

Кроме того, при превращении оксигемоглобина в гемоглобин происходит увеличением способности крови связывать двуокись углерода. Это явление носит название эффекта Хол-дейна. Гемоглобин служит источником катионов калия (К+), необходимых для связывания угольной кислоты в форме углекислых солей - бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемог-лобин. В таком виде двуокись углерода переносится к легким.

В капиллярах малого круга кровообращения концентрация двуокиси углерода снижается. От карбогемоглобина отщепляется С02. Одновременно происходит образование оксигемоглобина. увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на Н20 и С02. Круг завершен.

Осталось сделать еще одно примечание. Угарный газ (СО) обладает большим сродством к гемоглобину, чем углекислый газ (С02) и чем кислород. Поэтому отравления угарным газом столь опасны: вступая с устойчивую связь с гемоглобином, угарный газ блокирует возможность нормального транспорта газов и фактически «душит» организм. Жители больших городов, а особенно - водители личных автомобилей, постоянно вдыхают повышенные концентрации угарного газа, причем кондиционеры совсем не снижают его количество. Это приводит к тому, что даже достаточное количество полноценных эритроцитов в условиях нормального кровообращения оказывается неспособным выполнить транспортные функции. Отсюда - обмороки, сердечные приступы и внезапные смерти относительно здоровых людей в условиях автомобильных пробок.

Материал подготовил: Atamovich

Которые, как ни парадоксально, самостоятельно не применяются в качестве диуретиков (мочегонных средств). В основном ингибиторы карбоангидразы применяются при глаукоме.

Карбоангидраза в эпителии проксимальных канальцев нефрона катализирует дегидратацию угольной кислоты, что является ключевым звеном в реабсорбции бикарбонатов. При действии ингибиторов карбоангидразы бикарбонат натрия не реабсорбируется, а выделяется с мочой (моча становится щелочной). Вслед за натрием из организма с мочой выводится калий и вода. Мочегонное действие веществ этой группы слабое, так как почти весь выделившийся в мочу в проксимальных канальцах натрий задерживается в дистальных частях нефрона. Поэтому в качестве диуретиков ингибиторы карбоангидразы в настоящее время самостоятельно не применяются .

Препараты ингибиторов карбоангидразы

Ацетазоламид

(диакарб) является наиболее известным представителем данной группы диуретиков. Он хорошо всасывается в ЖКТ и в неизмененном виде быстро выделяется с мочой (то есть действие его кратковременное). Аналогичные ацетазоламиду препараты – дихлорфенамид (даранид) и метазоламид (нептазан).

Метазоламид относится также к классу ингибиторы карбоангидразы. Имеет более длительный период полувыведения, чем ацетазоламид и менее нефротоксичен.

Дорзоламид . Показан для снижения повышенного внутриглазного давления у пациентов с открытоугольной глаукомой или с глазной гипертензией, которые недостаточно реагируют на бета-адреноблокаторы.

Бринзоламид (торговые наименования Azopt, Alcon Laboratories, Inc, Befardin Fardi MEDICALS) относится также к классу ингибиторы карбоангидразы. Используется для снижения внутриглазного давления у пациентов с открытоугольной глаукомой или глазной гипертензией. Активно применяется сочетание бринзоламида с тимололом на рынке под торговым названием Азарга (Azarga).

Побочные эффекты

Ингибиторы карбоангидразы оказывают следующие основные побочные эффекты:

  • гипокалиемия;
  • гиперхлоремический метаболический ацидоз;
  • фосфатурия;
  • гиперкальциурия с риском образования почечных камней;
  • нейротоксичность (парестезии и сонливость);
  • аллергические реакции.

Противопоказания

Ацетазоламид, как и другие ингибиторы карбоангидразы, противопоказан при циррозе печени, так как подщелачивание мочи препятствует выделению аммиака, что приводит к энцефалопатии.

Показания к применению

Ингибиторы карбоангидразы в основном используются для лечения глаукомы. Они также могут быть использованы для лечения эпилепсии и острой горной болезни. Так как они способствуют растворению и выведению мочевой кислоты, они могут быть использованы при лечении подагры.

Ацетазоламид применяется при следующих состояниях:

  • Глаукома (снижает продукцию внутриглазной жидкости сосудистым сплетением цилиарного тела.
  • Лечение эпилепсии (petit mal). Ацетазоламид эффективен при лечении большинства типов припадков, в том числе тонико-клонических и абсансов, хотя и имеет ограниченную пользу, так как при длительном применении развивается толерантность.
  • Для профилактики нефропатии при лечении , так как при распаде клеток освобождается большое количество пуриновых оснований, которые обеспечивают резкое увеличение синтеза мочевой кислоты. Подщелачивание мочи ацетазоламидом из-за выделения бикарбонатов тормозит нефропатию вследствие выпадения кристаллов мочевой кислоты.
  • Для повышения диуреза при отеках и коррекции метаболического гипохлоремического алкалоза при ХСН. За счет снижения реабсорбции NaCl и бикарбонатов в проксимальных канальцах.

Однако ни при одном из этих показаний назначение ацетазоламида не является основным фармакологическим лечением (препаратом выбора). Ацетазоламид назначается также при горной болезни (так как он вызывает ацидоз, который приводит к восстановлению чувствительности дыхательного центра к гипоксии).

Ингибиторы карбоангидразы при лечении горной болезни

На большой высоте парциальное давление кислорода ниже, и люди должны дышать быстрее, чтобы получить достаточное для жизни количество кислорода. Когда это происходит, парциальное давление углекислого газа CO2 в легких уменьшается (просто выдувается при выдохе), в результате чего возникает дыхательный алкалоз. Этот процесс, как правило, компенсируется почками благодаря экскреции бикарбонатов и благодаря этому вызывается компенсаторный метаболический ацидоз, но этот механизм занимает несколько дней.

Более непосредственное лечение это ингибиторы карбоангидразы, которые предотвращают поглощение бикарбоната в почках и помогают скорректировать алкалоз. Ингибиторы карбоангидразы также улучшают течение хронической горной болезни.

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

Хотя СO2 растворяется в жидкости гораздо лучше, чем O2 , только 3−6 % общего количества продуцируемого тканями СO2 переносится плазмой крови в физически растворенном состоянии. Остальная часть вступает в химические связи.

Поступая в тканевые капилляры, СО2 гидратируется, образуя нестойкую угольную кислоту:

Направление этой обратимой реакции зависит от РCО2 в среде. Она резко ускоряется под действием фермента карбоангидразы, находящегося в эритроцитах, куда СO2 быстро диффундирует из плазмы.

Около4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СO2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода - дезоксигенирование (эффект Холдена). При этом гемоглобин высвобождает связанный с ним ион калия, с которым в свою очередь, реагирует угольная кислота:

Часть ионов НСО-3 диффундирует в плазму, связывая там ионы натрия, в эритроцит же поступают в порядке сохранения ионного равновесия ионы хлора. Кроме того, также за счет уменьшения протонного сродства дезоксигенированный гемоглобин легче образует карбаминовые соединения, связывая при этом еще около 15 % переносимого кровью СO2 .

В легочных капиллярах происходит высвобождение части СO2 , который диффундирует в альвеолярный газ. Этому способствует более низкое, чем в плазме, альвеолярное РCO2 также усиление кислотных свойств гемоглобина при его оксигенации. В ходе дегидратации угольной кислоты в эритроцитах (эта реакция тоже резко ускоряется карбоангидразой) оксигемоглобин вытесняет ионы калия из гидрокарбоната. Ионы НСО-3 поступают из плазмы в эритроцит, а ионы Cl- - в обратном направлении. Таким путем каждые 100 мл крови отдают в легких 4−5 мл СО2 - то же количество, какое кровь получает в тканях (артериовенозная разница по СO2).



Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Карбоангидраза I Карбоангидра́за (синоним: карбонатдегидратаза, карбонатгидролиаза)

фермент, катализирующий обратимую реакцию гидратации диоксида углерода: СО 2 + Н 2 О ⇔ Н 2 СО 3 ⇔ Н + + НСО 3 . Содержится в эритроцитах, клетках слизистой оболочки желудка, коре надпочечников, почках, в незначительных количествах - в ц.н.с., поджелудочной железе и других органах. Роль К. в организме связана с поддержанием кислотно-щелочного равновесия (Кислотно-щелочное равновесие), транспортом СО 2 , образованием соляной кислоты слизистой оболочкой желудка. К. в крови в норме довольно постоянна, но при некоторых патологических состояниях она резко меняется. Повышение активности К. в крови отмечается при анемиях различного генеза, нарушениях кровообращения II-III степени, некоторых заболеваниях легких (бронхоэктазах, пневмосклерозе), а также при беременности. Снижение активности этого фермента в крови происходит при ацидозе почечного генеза, гипертиреозе. При внутрисосудистом гемолизе К. появляется в моче, в то время как в норме она отсутствует. Контролировать активность К. в крови целесообразно во время оперативных вмешательств на и легких, т.к. она может служить показателем адаптивных возможностей организма, а также при терапии ингибиторами карбоангидразы - гипотиазидом, диакарбом.

Для определения активности К. применяют радиологические, иммуноэлектрофоретические, колориметрические и титриметрические методы. Определение производят в цельной крови, взятой с гепарином, или в гемолизированных эритроцитах. Для клинических целей наиболее приемлемы колориметрические методы определения активности К. (например, модификации метода Бринкмана), основанные на установлении времени, необходимого для сдвига рН инкубационной смеси с 9,0 до 6,3 в результате гидратации СО 2 . Воду, насыщенную углекислотой, смешивают с индикаторно-буферным раствором и определенным количеством сыворотки крови (0,02 мл ) или взвеси гемолизированных эритроцитов. В качестве индикатора используют феноловый красный. По мере диссоциации молекул угольной кислоты все новые молекулы СО 2 подвергаются ферментативной гидратации. Для получения сравнимых результатов должна протекать всегда при одинаковой температуре, наиболее удобно поддерживать температуру тающего льда - 0°. Время контрольной реакции (спонтанной реакции гидратации СО 2) в норме составляет 110-125 с . В норме при определении этим методом активность К. в среднем равна 2-2,5 условным единицам, а в пересчете на 1 млн. эритроцитов 0,458 ± 0,006 условным единицам (за единицу активности К. принимают увеличение скорости катализируемой реакции в 2 раза).

Библиогр.: Клиническая оценка лабораторных тестов, под ред. Н.У. Тица, . с англ., с. 196, М., 1986.

II Карбоангидра́за

1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Смотреть что такое "Карбоангидраза" в других словарях:

    Карбоангидраза … Орфографический словарь-справочник

    Фермент, катализирующий обратимую реакцию образования угольной кислоты из диоксида углерода и воды. Ингибиторы карбоангидразы применяют в медицине для лечения некоторых сердечно сосудистых и др. заболеваний … Большой Энциклопедический словарь

    Угольная ангидраза, карбонат гидролиаза, фермент класса лиаз, катализирует обратимую реакцию гидратации двуокиси углерода. Обнаружена у животных, человека, растений, бактерий. Содержит в качестве кофактора атом Zn. Мол. м. 28 000 30 000.… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 1 фермент (253) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    карбоангидраза - Металлофермент (содержит в активном центре ионы цинка), катализирущий обратимую реакцию гидратирования углекислоты; дефицит К. является причиной мраморной болезни у человека. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь… … Справочник технического переводчика

    Фермент, катализирующий обратимую реакцию образования угольной кислоты из диоксида углерода и воды. Ингибиторы карбоангидразы применяют в медицине для лечения некоторых сердечно сосудистых и других заболеваний. * * * КАРБОАНГИДРАЗА КАРБОАНГИДРАЗА … Энциклопедический словарь - угольная ангидраза, карбонат гидролиаза, фермент класса лиаз (См. Лиазы), катализирующий обратимое образование угольной кислоты из двуокиси углерода и воды: CO2 + H2O ↔ H2CO3. К. металлопротеид, содержащий Zn; молекулярная масса около 30… … Большая советская энциклопедия

    Фермент, катализирующий обратимую реакцию образования угольной кислоты из диоксида углерода и воды. Ингибиторы К. применяют в медицине для лечения нек рых сердечно сосудистых и др. заболеваний … Естествознание. Энциклопедический словарь

Перенос углекислого газа. Двуокись углерода, образующаяся в тканях, переносится с кровью к легким и выделяется с выдыхаемым воздухом в атмосферу. В отличие от транспорта кислорода она транспортируется кровью тремя способами.

Формы транспорта углекислого газа. Во-первых, так же как и кислород, двуокись углерода переносится в физически растворенном состоянии. Содержание физически растворенной двуокиси углерода в артериальной крови составляет 0,026 мл в 1 мл крови, что в 9 раз превышает количество физически растворенного кислорода. Это объясняется гораздо более высоким коэффициентом растворимости дву-окиси углерода.

Во-вторых, двуокись углерода транспортируется в виде химического соединения с гемоглобином - карбогемоглобина.

В третьих - в виде гидрокарбоната НСОз, образующегося в результате диссоциации угольной кислоты.

Механизм переноса двуокиси углерода. Перенос двуокиси углерода из тканей в легкие осуществляется следующим образом. Наибольшее парциальное давление двуокиси углерода в клетках тканей и в тканевой жидкости - 60 мм рт.ст.; в притекающей артериальной крови оно составляет 40 мм рт.ст. Благодаря этому градиенту двуокись углерода движется из тканей в капилляры. В результате ее парциальное давление возрастает, достигая в венозной крови 46-48 мм рт.ст. Под влиянием высокого парциального давления часть двуокиси углерода физически растворяется в плазме крови.

Роль карбоангидразы. Большая же часть двуокиси углерода претерпевает химические превращения. Благодаря ферменту карбоангидразе она соединяется с водой, образуя угольную кислоту Н2СО3. Особенно активно эта реакция идет в эритроцитах, мембрана которых хорошо проницаема для двуокиси углерода.

Угольная кислота (Н2СО3) диссоциирует на ионы водорода Н+ и гидро-карбоната (НСОз), которые проникают через мембрану в плазму.

Наряду с этим двуокись углерода соединяется с белковым компонентом гемоглобина, образуя карбоаминовую связь.

В целом 1 л венозной крови фиксирует около 2 ммоль двуокиси углерода. Из этого количества 10 % находится в виде карбоаминовой связи с гемоглобином, 35 % составляют ионы гидрокарбоната в эритроцитах, и оставшиеся 55 % представлены угольной кислотой в плазме.

Роль дыхания в регуляции рН крови.



При недостатке кислорода (гипоксия) усиливается доля гликолитических реакций в метаболизме, что проявляется в избытке недоокисленных продуктов, молочной, а-кетоглютаровой и пировиноградной кислот. При выраженной гипоксии наблюдается сдвиг рН в кислую сторону (ацидоз).

Кривая диссоциации двуокиси углерода.

По своему характеру эта кривая принципиально не отличается от кривой диссоциации оксигемоглобина. Однако содержание двуокиси углерода в крови не сводится только к диссоциации карбогемоглобина и описывает все способы транспорта. На рисунке ниже приведены кривые связывания двуокиси углерода для оксигенированной (артериальной) и дезоксигенированной (венозной) крови.

Общая закономерность проявляется в увеличении содержания двуокиси углерода в крови при возрастании ее парциального давления.Газообмен в тканях

В тканях происходит непрерывное потребление кислорода и образование углекислого газа. Напряжение углекислого газа в тканях достигает 60–70 мм рт. ст., в венозной крови - только 46 мм рт. ст., поэтому углекислый газ из тканей поступает в тканевую жидкость и далее в кровь, делая ее венозной.

Кровь, поступающая в капилляры большого круга кровообращения, содержит большое количество кислорода. Его напряжение составляет 100 мм рт. ст., в тканевой жидкости напряжение кислорода - 20–37 мм рт. ст. Происходит газообмен между кровью и тканевой жидкостью, т.е. кислород из крови переходит в тканевую жидкость. Ткани потребляют около 40 % всего кислорода, содержащегося в крови. При усилении обмена веществ потребление кислорода тканями увеличивается. Количество кислорода, которое поглощается тканями, выраженное в процентах, называют коэффициентом утилизации кислорода , т.е. это разница между содержанием кислорода в артериальной и венозной крови.



19. Дыхательный центр, современные представления о его структуре и локализации. Его клеточный состав и автоматия. Дыхательный центр. Во время вдоха, когда воздух начинает поступать в легкие, они растягиваются и рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных и вентральных ядрах локализованы центр вдоха и выдоха. От нейронов центра вдоха возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом, вдох стимулируется вдохом.

Современные представления о структуре ДЦ.

Функциональная характеристика дыхательного центра может быть как узкой, так и широкой.

В узком смысле слова под дыхательным центром понимают сравнительно ограниченную нейрональную структуру, которая определяет ритмическое дыхание и без существова­ния которой дыхание невозможно. Такая нейрональная организация распо­лагается в области продолговатого мозга. Как показали опыты, при разру­шении этой зоны ритмическое дыхание необратимо исчезает.

В широком смысле слова под дыхательным центром понимают сово­купность структур мозга, так или иначе участвующих в регуляции дыхания и в наиболее совершенном приспособлении его к изменяющимся дыха­тельным потребностям организма.

Локализация структур дыхательного центра. При нанесении электри­ческих стимулов в разнообразные структуры ЦНС были обнаружены раз­личные области мозга, которые оказывали влияние на дыхание. Среди этих структур - кора большого мозга, промежуточный мозг, включающий гипо­таламус, средний мозг вместе с входящей в него ретикулярной формацией, мост мозга, мозжечок, а также продолговатый и спинной мозг.

Нервные механизмы регуляции дыхания.

Нейроны дыхательного центра продолговатого мозга как бы разделены (условно) на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают вдох, эта группа нейронов получила название инспираторных нейронов (инспираторный центр), т. е. центр вдоха. Другая же группа нейронов, отдающих волокна к внутренним межреберным,и; межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр), т. е. центр выдоха.

Нейроны экспираторного и инспираторного отделов дыхательного центрапродолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются.при действии малой частоты импульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время вдоха, частота импульсов от рецепторов легких все больше и больше нарастает и на высоте вдоха она настолько велика, что становится пессимальной для нейронов центра вдоха, но оптимальной для нейронов центра выдоха. Поэтому нейроны центра вдоха тормозятся, а нейроны центра выдоха возбуждаются. Таким образом, регуляция смены вдоха и выдоха осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра.

Кроме отмеченных хеморецепторных влияний, активность дыхательно­го центра продолговатого мозга определяется еще целым рядом факторов. Среди них наибольшее значение имеет афферентация от механорецепторов альвеол легких, поступающих по блуждающим нервам.

20. Механизмы ритмообразования дыхания и его рефлекторная саморегуляция. Хемо и механорецепторные контуры регуляции дыхательной ритмики.

Нейроны дыхательного центра продолговатого мозга как бы разделены (условно) на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают вдох, эта группа нейронов получила название инспираторных нейронов (инспираторный центр), т. е. центр вдоха. Другая же группа нейронов, отдающих волокна к внутренним межреберным,и; межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр), т. е. центр выдоха.

Нейроны экспираторного и инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются.при действии малой частоты импульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время вдоха, частота импульсов от рецепторов легких все больше и больше нарастает и на высоте вдоха она настолько велика, что становится пессимальной для нейронов центра вдоха, но оптимальной для нейронов центра выдоха. Поэтому нейроны центра вдоха тормозятся, а нейроны центра выдоха возбуждаются. Таким образом, регуляция смены вдоха и выдоха осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра.

Кроме отмеченных хеморецепторных влияний, активность дыхательно-го центра продолговатого мозга определяется еще целым рядом факторов. Среди них наибольшее значение имеет афферентация от механорецепторов альвеол легких, поступающих по блуждающим нервам. Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахея и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз. Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях. Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к р-респираторным нейронам, которые в свою очередь тормозят

а-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких.

Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

21. Функциональная система, обеспечивающая постоянство газовых констант крови. Анализ. Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

22. Дыхание в условиях пониженного и повышенного атмосферного давления. Анализ причин . Дыхание при пониженном атмосферном давлении.

При подъеме на высоту человек оказывается в условиях пониженного атмосферного давления. Следствием понижения атмосферного давления является гипоксия, которая развивается в результате низкого парциального давления кислорода во вдыхаемом воздухе.

При подъеме на высоту 1,5-2 км над уровнем моря не происходит значительного изменения снабжения организма кислородом и изменения дыхания. На высоте 2,5-5 км наступает увеличение вентиляции легких, вызванное стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Все эти реакции направлены на усиление снабжения тканей кислородом.

Увеличение вентиляции легких на высоте может привести к снижению парциального давления углекислого газа в альвеолярном воздухе - гипокапнии, при которой снижается стимуляция хеморецепторов, особенно центральных, это ограничивает увеличение вентиляции легких.

Природа горной болезни. На высоте 4-5 км развивается высотная (горная) болезнь, которая характеризуется: слабостью, цианозом, снижением частоты сердечных сокращений, артериального давления, головными болями, снижением глубины дыхания. На высоте свыше 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания. Особенно большую опасность представляет быстрое развитие гипоксии, при котором потеря сознания может наступить внезапно.