О чем гласит теория струн простым языком? Теория суперструн.

Теория относительности представляет Вселенную «плоской», но квантовая механика утверждает, что на микроуровне происходит бесконечное движение, искривляющее пространство. Теория струн объединяет эти идеи и представляет микрочастицы как следствие объединения тончайших одномерных струн, которые будут иметь вид точечных микрочастиц, следовательно, не могут наблюдаться экспериментально.

Данная гипотеза позволяет представить элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.

Все свойства элементарных частиц объясняются резонансным колебанием волокон, их образующих. Эти волокна могут совершать бесконечное множество вариантов вибраций. Данная теория предполагает объединение идей квантовой механики и теории относительности. Но из-за наличия множества проблем в подтверждении мыслей заложенных в ее основе большая часть современных ученых считают, что предложенные идеи не более чем самая обыкновенная профанация или другими словами — теория струн для чайников, то есть для людей, которые совершенно не разбираются в науке и строении окружающего мира.

Свойства ультрамикроскопических волокон

Чтобы понять их суть, можно представить струны музыкальных инструментов – они могут вибрировать, изгибаться, сворачиваться. Тоже происходит и с этими нитями, которые издавая определенные вибрации, взаимодействуют друг с другом, сворачиваются в петли и образуют более крупные частицы (электроны, кварки), масса которых зависит от частоты вибрации волокон и их натянутости – эти показатели определяют энергию струн. Чем больше излучаемая энергия, тем выше масса элементарной частицы.

Инфляционная теория и струны

Согласно инфляционной гипотезе, Вселенная была создана благодаря расширению микро пространства, размером в струну (длина Планка). По мере увеличения этой области растягивались и так называемые ультрамикроскопические волокна, теперь их длина соизмерима с размерами Вселенной. Они точно так же взаимодействуют между собой и производят те же вибрации и колебания. Выглядит это как производимый ими эффект гравитационных линз, искажающих лучи света дальних галактик. А продольные колебания порождают гравитационное излучение.

Математическая несостоятельность и другие проблемы

Одной из проблем считается математическая несостоятельность теории — физикам, изучающим ее, не хватает формул для приведения ее в завершенный вид. А вторая заключается в том, что данная теория полагает, о существовании 10 измерений, но мы ощущаем всего 4 – высота, ширина, длина и время. Ученые предполагают, что остальные 6 — в скрученном состоянии, наличие которых не ощущается в реальном времени. Также проблемой является не возможность экспериментального подтверждения этой теории, но и опровергнуть ее никто не может.

В конечном счете все элементарные частицы можно представить в виде микроскопических многомерных струн, в которых возбуждены вибрации различных гармоник.

Внимание, пристегните покрепче ремни — и я попробую описать вам одну из самых странных теорий из числа серьезно обсуждаемых сегодня научных кругах, которая способна дать наконец окончательную разгадку устройства Вселенной. Теория эта выглядит настолько дико, что, вполне возможно, она правильна!

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории , объясняющей природу всего сущего. А это — своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего ) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии , в результате чего родилась теория суперструн , и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители — цементом.

В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия — калибровочные бозоны , которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия — например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10 -35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом — дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран — по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

См. также:

1972

Квантовая хромодинамика

Сколько же всего измерений?

Нам, простым людям, всегда хватало и трех измерений. С незапамятных времен мы привыкли описывать физический мир в столь скромных рамках (саблезубый тигр в 40 метрах спереди, 11 метрах правее и 4 метрах выше меня — булыжник к бою!). Теория относительности приучила большинство из нас к тому, что время — суть четвертое измерение (саблезубый тигр не просто здесь — он здесь и сейчас угрожает нам!). И вот, начиная с середины ХХ века, теоретики повели разговоры, что на самом деле измерений еще больше — не то 10, не то 11, не то вообще 26. Конечно, без объяснений, почему мы, нормальные люди, их не наблюдаем, тут обойтись не могло. И тогда возникла концепция «компактификации» — слипания или схлопывания измерений.

Представим садовый поливочный шланг. Вблизи он воспринимается как нормальный трехмерный объект. Стоит, однако, отойти от шланга на достаточное расстояние — и он представится нам одномерным линейным объектом: его толщину мы попросту перестанем воспринимать. Именно о таком эффекте и принято говорить, как о компактификации измерения: в данном случае «компактифицированной» оказалась толщина шланга — слишком мала шкала масштаба измерения.

Именно так, по утверждениям теоретиков, исчезают из поля нашего экспериментального восприятия реально существующие дополнительные измерения, необходимые для адекватного объяснения свойств материи на субатомном уровне: они компактифицируются, начиная с шкалы масштабов порядка 10 -35 м, и современные методы наблюдения и измерительные приборы просто не в состоянии обнаружить структур столь малого масштаба. Возможно, всё именно так и есть, а возможно, всё обстоит совершенно по-другому. Пока нет таких приборов и методов наблюдения, все вышеприведенные доводы и контрдоводы так и останутся на уровне досужих спекуляций.

Всесторонне изучая нашу вселенную, ученые определяют ряд закономерностей, фактов, которые впоследствии становятся законами, доказанными гипотезами. На основе них продолжаются другие исследования способствующие всестороннему изучению мира в цифрах.

Теория струн вселенной – способ представления пространства вселенной, состоящей из неких нитей, которые и называют струнами и бранами. Говоря проще (для чайников), основой мира являются не частицы(как мы знаем), а вибрирующие энергетические элементы называемые струнами и бранами. Размер струны очень и очень мал - примерно 10 -33 см.

Для чего это надо и пригодилось ли? Теория послужила толчком описанию понятия «гравитация».

Теория струн математическая, то есть физическая природа описана уравнениями. Их много, но единого и верного нет. Экспериментально скрытые измерения вселенной еще не удалось определить.

В основу теории положено 5 концепций:

  1. Мир состоит из нитей, находящихся в вибрирующем состоянии и энергетических мембран.
  2. В теории основой является теорию гравитации и квантовой физики.
  3. Теория объединяет все основные силы вселенной.
  4. Частицы бозоны и фермионы имеют новый вид связи – суперсимметрию.
  5. Теория описывает ненаблюдаемые человеческим глазом измерения во Вселенной.

Лучше понять теорию струн поможет сравнение с гитарой

Впервые о данной теории мир услышал в семидесятых годах ХХ века. Имена ученых в развитии данной гипотезы:

  • Виттен;
  • Венециано;
  • Грин;
  • Гросс;
  • Каку;
  • Малдасена;
  • Поляков;
  • Сасскинд;
  • Шварц.

Энергетические нити считали одномерными — струнами. Это значит, что у струны есть 1 измерение — длина (высоты нет). Различают 2 вида:

  • открытые, в которых концы не прикасаются друг к другу;
  • замкнутые — петля.

Было установлено, что они могут взаимодействовать и таких вариантов 5. В основе этого лежит возможность соединять, разъединять концы. Невозможно отсутствие кольцевых струн, по причине возможности объединения открытых струн.

Вследствие этого, ученые полагают, что теория способна описать не объединение частиц, а поведение, силу тяжести. Браны или листы рассматривают как элементы, к которым крепятся струны.

Вас заинтересует

Квантовая гравитация

В физике существует квантовый закон и общая теория относительности. Квантовая физика изучает частицы в масштабах вселенной. Гипотезы в ней называются теориями квантовой гравитации среди наиболее важных считают струнную.

Замкнутые нити в ней работают соответственно силам тяжести, обладая свойствами гравитона — частица, которая переносит свойства между частицами.

Объединение сил . Теория включает объединенные силы в одну – электромагнитную, ядерную, гравитационную. Ученые считают, что именно так было раньше, до того как силы разделили.

Суперсимметрия . Согласно понятию суперсимметрии, между бозонами и фермионами (структурными единицами вселенной) есть связь. Для каждого из бозонов существует фермион, верно и обратное: для фермиона есть бозон. Рассчитано это на основе уравнений, но не подтверждено экспериментально. Плюсом суперсимметрии является возможность исключения некоторых переменных (бесконечных, мнимых энергетических уровней).

По мнению физиков, причиной отсутствия возможности доказать суперсимметрию является причина необходимости большой энергии, связанной с массой. Она была раньше, до периода снижения температуры во вселенной. После Большого взрыва произошло рассеивание энергии и переход частиц на более низкие энергетические уровни.

Говоря проще, струны, которые могли вибрировать со свойствами частиц с большой энергией, утратив ее, стали низко вибрационными.

Создавая ускорители частиц, ученые хотят определить супер симметричные элементы с необходимым энергетическим уровнем.

Дополнительные измерения теории струн

Следствием теории струн является математическое представление, согласно которому должно быть больше 3 измерений. Первое объяснение этого – дополнительные измерения стали компактными, маленькими вследствие чего их нельзя увидеть, воспринять.

Мы существуем в трехмерной бране, став отрезанными от других измерений. Только возможность использовать математическое моделирование дала надежду на получение координат, которые бы связали их. Последние исследования в этой области дают возможность предполагать появление новых оптимистических данных.

Простое понимание цели

Ученые всего мира, исследуя супер струны, стараются обосновать теорию относительно всей физической реальности. Единая гипотеза могла бы все характеризовать на фундаментальном уровне, объяснив вопросы устройства планеты.

Теория струн появилась при описании адронов, частиц с высшими колебательными состояниями струны. Если говорить коротко, то она легко поясняет переход длины в массу.

Теорий суперструн много. Сегодня не известно достоверно, возможно ли с помощью нее объяснить теорию пространства времени точнее Эйнштейна. Проведенные измерения точных данных не дают. Одни из них, касающиеся пространства времени, являлись следствием взаимодействий струн, но в конечном счете были подвержены критике.

Теория гравитации станет основным следствием описываемой теории в случае ее подтверждения.

Струны и браны стали толчком к появлению более 10 тысяч вариантов суждений о вселенной. Книги по теории струн есть в общем доступе в интернете, подробно и понятно описывается авторами:

  • Яу Шинтан;
  • Стив Надис «Теория струн и скрытые измерения Вселенной»;
  • Говорится об этом и у Брайана Грина в «Элегантной Вселенной».


Мнения, доказательства, рассуждения и все мельчайшие подробности можно узнать, заглянув в одну из многих книг, которые доступно и интересно дают понять информацию о мире. Физики объясняют существующую вселенную нашим нахождением, существованием других вселенных (даже аналогичных нашей). По Эйнштейну, есть свернутый вариант пространства.

В теории суперструн могут соединяться точки параллельных миров. Установленные законы в физике дают надежду на возможность перехода среди вселенных. Одновременно с этим, квантовая теория гравитации нивелирует это.

Физики говорят и о голографической фиксации данных, когда они записываются на поверхности. Это в будущем даст толчок к пониманию суждения об энергетических нитях. Есть суждения о множественности измерений времени и возможности перемещении в нем. Гипотеза большого взрыва по причине столкновения 2 бран говорит о возможности повторения циклов.

Мироздание, появление всего и постепенное преобразование всего всегда занимало выдающиеся умы человечества. Новые открытия были, есть и будут. Конечная трактовка теории струн даст возможность определить плотность материи, космологическую постоянную.

Благодаря этому, определят способность вселенной сжиматься до последующего момента взрыва и нового начала всего. Теории разрабатывают, доказывают и они к чему-то приводят. Так, уравнение Эйнштейна, описывающее зависимость энергии от массы и квадрата скорости света E=mc^2 впоследствии стало толчком к появлению ядерного оружия. После этого изобрели и лазер, транзистор. Сегодня неизвестно чего ждать, но к чему-то это непременно приведет.

В начале XX века были сформированы две несущие опоры современного научного знания. Одной из них является общая теория относительности Эйнштейна, объясняющая явление силы тяжести и структуру пространства-времени. Другая - квантовая механика, описывающая физические процессы сквозь призму вероятности. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни.

Теория струн простым языком

Основные положения одной из наиболее известных «теорий всего» сводятся к следующему:

  1. Основу мироздания составляют протяженные объекты, которые по форме напоминают струны;
  2. Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте;
  3. В результате этих колебаний образуются различные элементарные частицы (кварки, электроны и т.д.).
  4. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания;
  5. Теория помогает по-новому взглянуть на черные дыры;
  6. Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами;
  7. В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения;
  8. В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию.

Историческая справка

История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику.

Основные этапы ее развития:

  1. 1943-1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки;
  2. 1959-1968 гг. Были обнаружены частицы с высокими спинами (моментами вращения). Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории (которые были названы его именем);
  3. 1968-1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны;
  4. 1974-1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова;
  5. 1994-2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений;
  6. 2003 - н. в. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума .

Теория квантовых струн

Ключевыми объектами в новой научной парадигме являются тончайшие объекты , которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице.

Основные свойства струн согласно современным представлениям:

  • Длина их чрезвычайно мала - около 10 -35 метров. В подобном масштабе становятся различимы квантовые взаимодействия;
  • Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта;
  • Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры.

Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли. Причем возможны такие превращения:

  • Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов;
  • Отрезок дает начало петле, если часть его «закольцуется»;
  • Петля разрывается и становится открытой струной;
  • Два отрезка обмениваются сегментами.

Прочие фундаментальные объекты

В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций - бранов - в виде цилиндра или объемного кольца, которые имеют такие особенности:

  • Они в несколько миллиардов раз меньше атомов;
  • Могут распространяться через пространство и время, имеют массу и заряд;
  • В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения;
  • Многомерное пространство, которое скрывается под бранами, является гиперпространством;
  • С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести - гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения;
  • На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия;
  • Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство.

Критические замечания

Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов.

Среди наиболее часто высказываемых замечаний:

  • Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами;
  • Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования;
  • Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы;
  • Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.

Пожалуй, легче доказать теорему Ферма, чем простыми словами разъяснить положения теории струн. Математический аппарат ее столь обширен, что понять ее под силу лишь маститым ученым из крупнейших НИИ.

До сих пор не ясно, найдут ли реальное применение сделанные за последние десятки лет на кончике пера открытия. Если да, то нас ждет дивный новый мир с антигравитацией, множеством вселенных и разгадкой природы черных дыр.

Видео: теория струн кратко и доступно

В данном ролике физик Станислав Ефремов расскажет простыми словами, в чем заключается теория струн:

Ключевые вопросы:

Каковы фундаментальные компоненты Вселенной -«первокирпичики материи»? Существуют ли теории, способные объяснить все основные физические явления?

Вопрос: это реально?

На сегодняшний день и в обозримом будущем, непосредственное наблюдение в столь малых масштабах не представляется возможным. Физика находится в поиске, и проводимые эксперименты, например, по обнаружению суперсимметричных частиц или поиску дополнительных измерений на ускорителях могут указать, что теория струн находится на верном пути.

Является теория струн теорией всего, или нет, она дает нам в руки уникальный набор инструментов, позволяющий заглянуть в глубинные структуры реальности.

Теория струн


Макро и микро


При описании Вселенной, физика делит ее на две, казалось-бы, несовместимых половинки - квантовый микромир, и макромир, в рамках которого описывается гравитация.


Теория струн это противоречивая попытка объединения этих половинок в «Теорию всего».


Частицы и взаимодействия


Мир сделан из двух видов элементарных частиц - фермионов и бозонов. Фермионы это всё наблюдаемое вещество, а бозоны являются переносчиками четырех известных фундаментальных взаимодействий: слабого, электромагнитного, сильного и гравитационного. В рамках теории, называемой «Стандартно моделью», физикам удалось изящно описать и проверить три фундаментальных взаимодействи все, кроме самого слабого - гравитационного. Hа сегодняшний день Стандартная модель является наиболее точной и экспериментально подтвержденной моделью нашего мира.


Зачем нужна теория струн


Стандартная модель не включает гравитацию, не может описать центр черной дыры и Большой взрыв, не объясняет результаты некоторых экспериментов. Теория струн - это попытка разрешить эти проблемы и унифицировать материю и взаимодействия, заменив элементарные частицы крошечными вибрирующими струнами.



В основе теории струн лежит идея, что все элементарные частицы можно представить в виде одного элементарного «первокирпичика» - струны. Струны могут вибрировать, и разные моды таких колебании на большом удалении будут выглядеть для нас как различные элементарные частицы. Одна мода вибрации заставит струну выглядеть как фотон, другая - как электрон.


Существует даже мода, описывающая переносчик гра в ита цио н но го взаимодействия - гравитон! Варианты теории струн описывают струны двух видов: открытые (1) и замкнутые (2). Открытые струны имеют два конца (3), расположенных на мембрано-подобных структурах, называемых D-бранами, и их динамикой описываются три из четырех фундаментальных взаимодействии - все, за исключением гравитационного.


Замкнутые струны напоминают петли, они не привязаны к D- бранам - именно колебательные моды замкнутых струн представляются безмассовым гравитоном. Концы открытой струны могут соединяться, образуя замкнутую струну, которая, в свою очередь, может разрываться, превратившись в открытую, или сойтись и расщепиться на две замкнутые струны (5) - таким образом в теории струн гравитационное взаимодействие объединяется со всеми остальными



Струны - самые маленькие из всех объектов, которыми оперирует физика. Диапазон размеров V объектов, представленных на картинке выше, простирается на 34 порядка - если бы атом был размером с солнечную систему, то размер струны мог бы быть чуть больше атомного ядра.



Дополнительные измерения


Непротиворечивые теории струн возможны лишь в пространстве высшей размерности, где в дополнение к знакомым нам 4м пространственно-временным измерениям требуется 6 дополнительных. Теоретики полагают, что эти дополнительные измерения свернуты в неуловимо малые формы -пространства Калаби-Яу. Одной из проблем теории струн является то, что существует почти бесконечное количество вариантов свертки (ком пактификации) Калаби-Яу, позволяющее описать какой угодно мир, и пока нет никакой возможности найти тот вариант ко м па ктифи ка ци и, который бы позволял описать то, что мы видим вокруг.


Суперсимметрия


Большинство версий теории струн требует понятия суперсимметрии, в основе которого лежит идея о том, что фермионы (вещество) и бозоны (взаимодействия) суть есть проявления одного и того-же объекта, и могут превращаться друг в друга.


Теория всего?


Суперсимметрию в теорию струн можно включить 5ю различными способами, что приводит к 5 различным видам теории струн, из чего следует, что сама по себе теория струн не может претендовать на звание «теории всего». Все эти пять видов связаны между собой математическими преобразованиями, называемыми дуальностями, и это привело к пониманию, что все эти виды являются аспектами чего-то более общего. Эту более общую теорию называют М-Теорией.



Известно 5 различных формулировок теории струн, однако при ближайшем рассмотрении, выясняется что все они являются проявлениями более общей теории