Общая ингаляционная анестезия. Анестетики: определение термина, классификация, описание препаратов, противопоказания, побочные эффекты Ингаляционные анестезирующие препараты, краткая характеристика

Степень защиты организма от операционной травмы, в настоящее время продолжает оставаться предметом дискуссий. Неполноценная анестезиологическая защита чревата тяжелыми осложнениями, предпосылки которых закладываются во время операции, однако подобные осложнения можно предотвратить, в том числе и рациональной анестезиологической защитой.

В свою очередь от метода обезболивания требуется обеспечение нейровегетативной защиты и аналгезии, не компрометирующих функции органов и систем. Каждый метод обезболивания имеет свои плюсы и минусы. Выбор средств защиты пациента, часто представляет не легкую задачу. Это определяется спецификой оперативного вмешательства, особенностями пациента, а также предпочтениями анестезиолога.

Внушающие оптимизм результаты получены при использовании ингаляционных анестетиков. Так к 2012 г. доля анестезий на основе севофлурана превысила 70% от числа общих анестезий в России по сравнению с 2004 г., где эта величина составляла 21%.

В данной группе объединены: медицинские газы (закись азота и ксенон), галогенсодержащие препараты – первое поколение (галотан), второе (энфлуран и изофлуран), и третье (севофлуран и десфлуран). Выбор в пользу ингаляционного анестетика сегодня очевиден, но и сложен. На данный момент ингаляционная анестезия переживает своеобразную «эпоху возрождения».

Органотоксичность

Ренессанс ингаляционных анестетиков в современной практике связан с тем, что целые поколения отечественных анестезиологов воспитывались в убеждении, что реализация комбинированной анестезии возможна только в рамках тотального внутривенного наркоза, а галогенсодержащие препараты - это тупиковый путь развития, из-за проблем с органотоксичностью.

К обсуждению этой проблемы, специалисты возвращаются неоднократно, и чаще всего это связано с появлением нового препарата, либо с обнаружением новых механизмов реализации этого эффекта для уже известных и активно используемых препаратов. Данный вопрос, имеет отнюдь не дидактический характер, т.к. по свидетельству E.D. Kharasch, именно ответ на него чаще всего оказывает решающее влияние на выбор анестезиолога.

Принято считать, что органотоксичность является результатом изменений в клеточной структуре и (или) функции, которая возникает вслед за началом введения анестетика. Чем выше растворимость анестетика в крови, тем более высока вероятность образования токсических метаболитов.

Уровень биотрансформации отражает меру вероятной токсичности, которая уменьшается в следующей последовательности: метоксифлюран (65%) > галотан (20%) > севофлуран (3%) > энфлюран (2,4%) > изофлюран (0,2%) > десфлюран (0,02%).

В отношении ингаляционных анестетиков обсуждают гепато- и нефротоксичность. Проблема гепатотоксичности возникла вслед за появлением галотана. Известно, что галотан вызывает острый некроз печени (ОНП), либо субклиническую гепатотоксичность.

ОНП рассматривается как аутоиммунный процесс, инициируемый перекисным окислением галотана с образованием трифторацетата. Последний адсорбируется мембранами гепатоцитов и вызывает образование аутоантител, что и приводит к ОНП. Подобные случаи редки, но их последствия фатальны.

Изофлюран, энфлюран и десфлюран также образуют трифторацетат в процессе биодеградации, однако, в силу значительно меньшей биотрансформации, указанные выше препараты реже вызывают ОНП.

Гепатотоксичность связана с анаэробным метаболизмом галотана, активацией процессов перекисного окисления липидов и угнетением активности цитохрома Р450. Единственный селективный ингибитор цитохрома Р450 – дисульфирам. По некоторым данным, превентивное его назначение сдерживает рост концентрации фторид иона.

В ряду галогенсодержащих анестетиков севофлуран занимает особое положение. В литературе нет описания подтвержденных случаев развития ОНП после анестезии этим препаратом. Что касаемо изофлюрана, то имеются данные об эффективном поддержании общего печеночного кровотока и кровотока по мезентериальным сосудам при его применении.

В отношении острой почечной недостаточности, прямое нефротоксическое действие доказано только для метоксифлюрана, который может вызывать полиурию, резистентную к вазопрессину. Действующим агентом считается флюорид ион, образующийся в процессе биодеградации с пороговой концентрацией 50-80 мкМоль/л.

По мере появления новых галогенсодержащих анестетиков этот механизм был перенесен на них. Все они проходили тестирование на его содержание в плазме крови пациентов и, которое составило: для энфлюрана 20-30 мкМоль/л, изофлюрана 1,3-3,8 мкМоль/л, десфлюрана следы.

Что касаемо севофлурана, то данный показатель превысил 50 мкмоль/л, но, несмотря на это, уровень азотистых шлаков крови был в приделах нормы. Этому существует два возможных объяснения. Первое, севофлуран мало растворим в тканях и имеет ограниченную доступность для биотрансформации. И второе, его метаболизм происходит в печени, а не в почках.

Еще одно вещество, обладающее нефротоксическим действием, образуется при взаимодействии севофлурана с известковым адсорбентом соединения А. Впервые его нефротоксичность была показана у крыс. Вероятным общим элементом нефротоксического действия является биотрансформация в реактивные тиолы при участии глутатиона и бета-лиаз.

Но, несмотря на наличие общего для крыс и людей потенциально токсичсекого метаболического пути (при участии бета-лиаз), существуют важные межвидовые различия между почечными эффектами соединения А. У крыс развивается тяжелое поражение почек, тогда как о повышении частоты клинически значимой нефротоксичности у людей не сообщалось. Что вероятно связано с низкой активностью почечных бета-лиаз в организме человека.

Однако по данным других исследований, у добровольцев, которым проводили анестезию севофлураном низким потоком в течение 8 ч, выявлено возникновение преходящих нарушений функции почек.

Органопротекция

Прекондиционирование – благоприятные изменения в миокарде, вызываемые быстрыми адаптивными процессами в нем во время кратковременного эпизода тяжелой ишемии/реперфузии, которые предохраняют миокард от ишемических изменений до следующего эпизода ишемии/реперфузии.

Анестетики могут инициировать защитные эффекты не только в миокарде. Изменение баланса кислорода в миокарде в сторону повышения его доставки и снижения потребности, считается эффективным способом защиты сердца от ишемии. Ингаляционные анестетики положительно влияют на этот процесс, но как показывают исследования, основной механизм реализации кардиопротективного действия ингаляционных анестетиков заключается не только в этом.

Способность повышать устойчивость сердца к ишемии впервые обнаружена у галотана, затем и у других ингаляционных анестетиков, а механизмы оказались схожими с ишемическим прекондиционированием (ИПК), что дало право определить этот феномен как анестетическое прекондиционирование (АПК)

Механизм эффекта в общих чертах понятен: анестетики вызывают пороговое увеличение активных форм кислорода в митохондриях, запускают каскад последовательных реакций, приводящих к «блокированию» некоторых митохондриальных каналов. Защищенная таким образом митохондрия имеет больше шансов пережить эпизод ишемии/реперфузии. А далее вступает в силу правило — необратимое повреждение клетки происходит при гибели более 40% митохондрий.

Методика и мониторинг

В силу своих фармакокинетических и фармакодинамических свойств ингаляционные анестетики используют с низким газотоком, что позволяет снизить стоимость анестезиологического пособия. Кроме того, данный метод позволяет улучшить микроклимат в дыхательном контуре за счет повышения температуры и влажности вдыхаемой газовой смеси, тем самым поддерживая функцию бронхиального эпителия.

Требования к оборудованию

Первое, испарители жидких анестетиков должны иметь механизм термобарокомпенсации и обеспечивать корректное дозирование в диапазоне потоков газа от 0,2 до 15 л/мин.

Второе, проведение анестезии на основе низких потоков возможно лишь при использовании реверсивных дыхательных контуров: циркуляционный и маятниковый. В силу особенностей конструкции циркуляционный наиболее приемлем для проведения анестезии со сниженным газотоком. Маятниковый контур менее удобен, поскольку процессы адсорбции углекислого газа (СО2) в таких системах протекают менее эффективно.

Третье, при уменьшении газотока, в контуре увеличивается доля рециркулирующей выдыхаемой газовой смеси с высоким содержанием СО2. В таком случае наркозные аппараты должны быть укомплектованы адсорберами для удаления СО2. Известь в адсорбере должна быть признана выработавшей свой ресурс, если концентрация СО2 на вдохе превышает 6-7 мм Hg. В известковый сорбент добавляют цветовой индикатор, цвет которого изменяется от белого до розового по мере истощения сорбционной емкости для СО2.

И четвертое, дыхательный контур должен быть герметичен: величина допустимой утечки не должна превышать 100 мл/мин. Недостаточная герметичность приводит к поступлению в контур атмосферного воздуха, и как следствие происходит нарушение соотношения концентрации кислорода и ингаляционного анестетика.

Современная концепция ингаляционной анестезии подразумевает ее комбинацию с другими методами обезболивания. В настоящее время существует понимание того, что увлечение комбинаторикой лекарственных средств уступает место подходу с использованием ограниченного количества препаратов.

Чаще всего используется сочетание: миорелаксант — опиат — ингаляционный анестетик. Исследования показали, что при анестезиологическом обеспечении, общая анестезия энфлюраном или изофлюраном, в сочетании с фентанилом, значительнее эффективнее нейролептанальгезии и атаралгезии, а особенности фармакокинетики и фрамакодинамики ингаляционных анестетиков, обеспечивают быстрое и плавное введение в анестезию, гарантированную эффективность и скорое пробуждение.

Однако стоит заметить, что и ингаляционные анестетики для вводного наркоза применяются только в педиатрической практике. Хотя, по мнению некоторых авторов, ингаляционная индукция может иметь широкое распространение и у взрослых, для этого необходимо кардинальное изменение сложившихся стереотипов.

Таким образом, ингаляционная анестезия приобретает все большую популярность, что определяется ее хорошей управляемостью и относительной безопасностью. Это связано с возможностью быстрого достижения требуемой концентрации в организме и при необходимости столь же быстрого его снижения, что обеспечивает укорочение индукционных и восстановительных периодов, легкость и точность контроля над этим процессом.

Однако в России, как и в большинстве стран Европейского Союза, нет рекомендаций по использованию методики ингаляционной, поэтому выбор метода обезболивания остается за анестезиологом. Это диктует необходимость дифференцируемого подхода к выбору анестезиологического подхода, повышения эффективности и безопасности анестезиологического пособия, адаптации его к особенностям оперативного вмешательства и снижение количества осложнений как в интра-, так и в послеоперационном периодах.

Шадус В.С., Доброносова М.В., Григорьев Е.В.

, севофлуран и десфлуран . Галотан - это прототипичный педиатрический ингаляционный анестетик; его использование уменьшилось после появления изофлурана и севофлурана. Энфлуран редко применяют у детей.

Ингаляционные анестетики могут индуцировать апноэ и гипоксию у недоношенных грудных детей и новорожденных, поэтому их не так часто применяют в этом случае. При общей анестезин всегда необходима эндотрахеальная интубация и контролируемая ИВЛ. Старшие дети во время коротких операций, если возможно, дышат спонтанно через маску или через введенную в гортань трубку без управляемой вентиляции. При снижении объем выдоха легких и усиленной работе дыхательных мышц всегда необходимо повышение напряжения кислорода во вдыхаемом воздухе.

Действие на сердечно-сосудистую систему. Ингаляционные анестетики снижают минутный объем сердца и вызывают расширение периферических сосудов, поэтому часто приводят к гипотензии, особенно у пациентов с гиповолемией . Гипотензивное действие более выражено у новорожденных, чем у старших детей и взрослых. Ингаляционные анестетики также частично подавляют реакцию барорецепторов и ЧСС . Одна МАК галотана снижает минутный объем сердца приблизительно на 25%. Фракция выброса снижается также примерно на 25%. При одной МАК галотана ЧСС часто увеличивается; однако повышение концентрации анестетика может вызвать брадикардию, и выраженная брадикардия во время анестезии указывает на передозировку анестетика. Галотан и родственные ингаляционные агенты увеличивают чувствительность сердца к катехоламинам , что может привести к аритмии. Кроме того, ингаляционные анестетики снижают вазомоторный ответ легких на гипоксию в легочной циркуляции, что вносит свой вклад в развитие гипоксемии во время анестезии.

Ингаляционные анестетики снижают снабжение кислородом. В периоперационном периоде катаболизм усиливается и потребность в кислород возрастает. Поэтому возможно резкое несоответствие между потребностью в кислороде и его обеспечением. Отражением этого дисбаланса может быть метаболический ацидоз . В связи с подавляющим действием на сердечно- сосудистую систему применение ингаляционных анестетиков у недошенных и новорожденных грудных детей ограничено, но они широко используются для индукции и поддержания наркоза у более старших детей.

Все ингаляционные анестетики вызывают расширение сосудов мозга, но галотан более активно, чем севофлуран или изофлуран. Поэтому у детей с повышенным ВЧД , нарушенной перфузией головного мозга или травмой головы , а также у новорожденных с риском внутрижелудочкового кровоизлияния галотан и другие ингаляционные агенты следует применять с крайней осторожностью. Хотя ингаляционные анестетики уменьшают потребление кислорода мозгом, они могут непропорционально снизить кровообращение и тем самым ухудшить снабжение мозга кислородом.

«Идеального» ингаляционного анестетика не существует, но определенные требования предъявляются к любому из ингаляционных анестетиков. «Идеальный» препарат должен обладать рядом свойств, перечисленных ниже.

Физические свойства

    Низкая стоимость. Препарат должен бытьдешев и легко производим.

    Химическая стабильность. Препарат должен иметь длительный срок хранения и быть стабильным в широком диапазоне температур, он не должен реагировать с металлами, резинойили пластмассами. Он должен сохранять определенные свойства при ультрафиолетовом облучении и не требовать добавок стабилизаторов.

    Невоспламеняемость и невзрывоопасность. Пары не должны воспламеняться и поддерживать горение при клинически используемых концентрациях и смешивании с другими газами, например с кислородом.

    Препарат должен испаряться при комнатной температуре и атмосферном давлении с определенной закономерностью.

    Адсорбент не должен вступать в реакцию (с препаратом), сопровождающуюся выделением токсичных продуктов.

    Безопасность для окружающей среды. Препарат не должен разрушать озон или вызыватьдругие изменения окружающей среды даже в минимальных концентрациях.

Биологические свойства

    Приятен для вдыхания, не раздражает дыхательные пути и не вызывает усиления секреции.

    Низкий коэффициент растворимости кровь/газ обеспечивает быструю индукцию анестезии и восстановление после нее.

    Высокая сила воздействия позволяет использовать низкие концентрации в сочетании с высокими концентрациями кислорода.

    Минимальное побочное действие на другие органы и системы, например ЦНС, печень, почки, дыхательную и сердечно-сосудистую системы.

    Не подвергается биотрансформации и экскретируется в неизмененном виде; не реагирует с другими препаратами.

    Нетоксичен даже при хроническом воздействии малыми дозами, что весьма важно для персонала операционной.

Закись азота (динитроген оксид)

Закись азота (N 2 O) впервые получил знаменитый английский химик и философ Дж.Пристли (Pristley) в 1772 г. В 1799 г. английский химик Дэви (Davy) заметил, что когда он находится в камере с закисью азота у него проходит зубная боль. Так же он установил, что закись азота вызывает своеобразное опьянение, эйфорию и дал ей название «веселящий газ». Он же высказал предположение о возможности применения закиси азота в хирургии. В эксперименте добился состояния наркоза с помощью закиси азота и изучил его течение в 1820-1828 гг. английский ученый Хикман (Hickmann), однако, получить разрешение на клинические испытания ему не удалось. В 1844 г. закисный наркоз был «заново открыт» американским дантистом Уэллсом (Wells), который первоначально проверил его действие на себе. Тем не менее, первая публичная демонстрация операции под наркозом закисью азота в 1845 г. прошла не вполне удачно – больной хотя и уснул, но во время экстракции зуба кричал и стонал. В дальнейшем, стремясь получить более глубокий наркоз, он попытался применить чистую закись азота без кислорода. Наступил летальный исход. На почве глубоких переживаний в 1848 г. Уэллс покончил жизнь самоубийством.

В 1868 г. Эндрюс (Andrews) начал использовать закись азота в смеси с кислородом, что сразу улучшило результаты ее применения. Решающее значение для прочного вхождения закиси азота в клинику сыграли исследования французского физиолога Бера (Bert, 1877), который изучил течение наркоза и установил безопасные режимы дозирования препарата.

В России серьезные работы по изучению влияния закиси азота на организм в 1880-1881 гг. по инициативе С.П.Боткина провел С.К.Кликович. При его участии закись азота стала применяться для обезболивания родов (К.Ф.Славянский, 1880). Так же в последние годы XIXи в начале ХХ века закись азота использовалась дантистами. Широкое использование ее в российской хирургии началось только в 40-50-е годы ХХ века в Свердловске А.Т.Лидским, а затем в Москве И.С.Жоровым.

В связи с представлениями о полном отсутствии токсичности и совершенствованием наркозно-дыхательной аппаратуры к концу 70-х годов во всем мире закись азота стала наиболее популярным ингаляционным анестетиком. Она даже применялась для послеоперационного обезболивания в концентрации 40-60% в смеси с кислородом («Лечебный наркоз» по Б.В.Петровскому и С.Н.Ефуни)

Однако, во второй половине 80-х годов появились сообщения о повреждающем действии закиси азота (см. ниже). В связи с этими, и с появлением новых более совершенных внутривенных анестетиков, закись азота стала применяться реже. В настоящее время в экономически развитых странах она постепенно выходит из употребления. В России она продолжает использоваться очень широко, поскольку ее производство хорошо налажено, она дешева, а современные внутривенные анестетики дороги и в нашей стране не производятся.

Закись азота включена в «Перечень жизненно необходимых и важнейших лекарственных средств», утвержденный распоряжением Правительства РФ от 4 апреля 2002 г № 425-р.

N 2 O– бесцветный газ с характерным запахом и сладковатым вкусом. Хранится в баллонах серого цвета по 10 литров в сжиженном состоянии под давлением 50 атм. Из 1 литра жидкой закиси азота образуется 500 литров газа. Закись азота не горюча, не взрывоопасна, но способна поддерживать горение в смеси с эфиром и другими горючими веществами.

Она является слабым анестетиком. В максимальной концентрации 70-80% в смеси с кислородом вызывает наркоз не глубже III 1 (по Гведелу).

Первая стадия (анальгезия) развивается через 2-3 мин после начала ингаляции анестетика при концентрации его в газовой смеси не менее 50 об.%. Наблюдается легкая эйфория при затуманенном сознании. Болевая чувствительность исчезает, температурная и тактильная – сохраняются. Кожные покровы розовые, пульс и дыхание несколько учащены, АД повышено на 10-15 мм рт. ст. Зрачки расширены, но хорошо реагируют на свет.

Вторая стадия (возбуждение) наступает через 4-5 мин. После начала ингаляции закиси азота. И увеличении ее концентрации до 65-70%. Она бывает кратковременна, наблюдается только у физически крепких лиц, алкоголиков, больных с лабильной психикой и иногда у детей. Кожные покровы гиперемированы, пульс и дыхание учащены, АД повышено. Зрачки расширены, реакция на свет сохранена. Отмечаются двигательное и речевое возбуждение, судорожные сокращения мышц, иногда кашель и позывы на рвоту.

Третья стадия (хирургическая) развивается примерно через 5 минут после начала ингаляции закиси азота при ее концентрации в газовой смеси 75-80 об.%. Кожные покровы становятся бледными с сероватым оттенком, Пульс, дыхание, АД возвращаются к исходным значениям. Зрачки сужены, реагируют на свет. Корнеальные рефлексы сохранены, расслабления мышц не наблюдается.

Концентрации закись азота в газовой смеси более 80% недопустимы, поскольку при этом развивается гипоксия (цианоз кожи и слизистых, тахикардия, падение АД, судорожные подергивания, иногда рвота).

Пробуждение наступает через 3-5 минут после прекращения подачи закиси азота. Иногда в этот период наблюдаются кратковременное моторное возбуждение, позывы на рвоту.

Основными недостатками закиси азота являются:

Воздействие на дыхание . Усиление угнетающего действия барбитуратов и опиоидов на дыхание, что приводит к более позднему восстановлению самостоятельного дыхания после операции

Воздействие на кровообращение . За счет симпатомиметического действия повышает общее периферическое сосудистое сопротивление. Обладает прямым кардиодепрессивным действием.

Особые физические свойства . Обладает высокой растворимостью в крови (в 35 раз выше азота). За счет этого закись азота доставляется к слизистым оболочкам полых органов и диффундирует в них. Это выражается раздутием петель кишок, повышением давления в полости среднего уха. В результате в послеоперационном периоде развивается парез кишечника, тошнота и рвота центрального генеза.

Особые биохимические свойства . Ингибирует печеночную метионинсинтетазу (фермент, участвующий в синтезе азотистых оснований). Длительное применение закиси азота может вызвать мегалобластную анемию, а при более продолжительном использовании – аплазию костного мозга и агранулоцитоз.

Со времени первого публичного эксперимента с применением общего наркоза, когда были использованы ингаляционные анестетики в 1846 году, прошло немало времени. В качестве анестетика два века назад применяли такие средства, как закись углерода («веселящий газ»), эфир, галотан и хлороформ. С тех пор анестезиология шагнула далеко вперед: постепенно совершенствовались и разрабатывались препараты, более безопасные и имеющие минимальное количество побочных явлений.

В связи с высокой токсичностью и огнеопасностью, уже практически не используются такие препараты, как хлороформ и эфир. Их место надежно занимают новые (плюс к закиси азота) ингаляционные средства: галотан, изофлюран, севоран, метоксифлюран, десфлюран и энфлюран.

Ингаляционную анестезию часто применяют для детей, которые не всегда выдерживают внутривенное введение. Для взрослых обычно масочный метод применяют для поддержания обезболивающего эффекта при основном внутривенном, хотя именно ингаляционные препараты дают более скорый результат благодаря тому, что при поступлении в легочные сосуды эти средства быстрее разносятся в кровь и так же быстро выводятся.

Ингаляционные анестезирующие препараты, краткая характеристика

Севоран (в основе – вещество севофлюран) – эфир для общего наркоза, содержащий фтор.

Фармакология: севоран — ингаляционный анестетик общеобезболивающего действия, выпускаемый в виде жидкости. Препарат обладает растворимостью в крови чуть выше, чем, например, десфлюран, по мощности воздействия немного уступает энфлюрану. Идеально применение средства для подачи наркоза. Севоран не имеет цвета и резкого запаха, его действие в полной силе наступает через 2 минуты и менее с начала подачи, что очень быстро. Выход из севоранового наркоза наступает почти сразу благодаря его скорому выводу из легких, из-за чего обычно требуется послеоперационное обезболивание.

Севоран не огнеопасен, не взрывоопасен, не содержит никаких добавок или химических стабилизаторов.

Воздействие, оказываемое севораном на системы и органы, считается незначительным по той причине, что побочные явления, если и случаются, то выражены слабо и незначительно:

  • повышение внутричерепного давления и мозгового кровотока несущественное, не способно спровоцировать судороги;
  • немного снижен кровоток в почках;
  • подавление функции миокарда и снижение давления незначительное;
  • работа печени и кровоток в ней остаются на уровне нормы;
  • тошнота, рвота;
  • изменение давления в ту или иную сторону (повышение/понижение);
  • усиление кашля;
  • озноб;
  • возбуждение, головокружение;
  • может вызывать некоторую депрессию дыхания, что поправимо при грамотных действиях анестезиолога.

Противопоказания:

  • предрасположенность к злокачественной гипертермии;
  • гиповолемия.

С осторожностью следует применять севоран для подачи наркоза при нейрохирургических операциях у пациентов с ВЧГ (внутричерепной гипертензией), и при прочих хирургических вмешательствах при нарушении функций почек, во время лактации. В некоторых случаях эти заболевания и состояния могут выступить как противопоказания. В период беременности вреда от наркоза с севораном для матери и плода не выявлено.

Свои плюсы, минусы и принципы использования имеют и другие ингаляционные препараты.

Галотан. Степень распространения этого средства в крови и тканях довольно высокая, поэтому наступление сна происходит медленно, и чем дольше длится наркоз, тем больше времени уйдет на восстановление после него. Сильный препарат, подходящий как для вводной, так и для поддерживающей анестезии. Часто применяется у детей при невозможности установить внутривенный катетер. В связи с появлением более безопасных анестетиков, галотан применяю все реже, несмотря на его небольшую стоимость.

Среди побочных явлений отмечают понижение АД, брадикардию, нарушение кожного, почечного и мозгового кровотока, а также кровотока брюшной полости, аритмию, очень редко – мгновенный цирроз печени.

Изофлюран. Препарат из ряда последних разработок. По крови распределяется быстро, наступление наркоза (чуть менее, чем за 10 минут) и пробуждение также занимают минимальное время.

Побочные явления в основном дозозависимые: снижение артериального давления, вентиляции легких, печеночного кровотока, диуреза (при повышенной концентрации мочи).

Энфлюран. Скорость распределения средства в крови средняя, соответственно, наркоз и пробуждение тоже требуют времени (10 минут или чуть меньше). Благодаря тому, что со временем появились препараты, имеющие значительно меньшее количество побочных явлений, энфлюран отошел на второй план.

Побочные явления: дыхание учащается, становится поверхностным, снижает артериальное давление, иногда может повышать внутричерепное, а также вызывать судороги, ухудшает кровоток желудочно-кишечного тракта, почек и печени, расслабляет матку (поэтому в акушерстве не используется).

Десфлюран. Низкая степень распределения в крови, отключение сознания наступает очень быстро, так же, как и пробуждение (5-7 минут). Используют десфлюран в основном в качестве поддерживающей анестезии при основном внутривенном обезболивании.

Побочные явления: приводит к слюнотечению, поверхностному учащенному дыханию (возможна его остановка), снижению АД на все время ингаляции, кашлю, бронхоспазму (поэтому как вводная анестезия не используется), может повысить ВЧД. На печень и почки негативно не влияет.

Закись азота. Фармакология: анестетик очень плохо растворяется в крови, соответственно, наркоз наступает быстро. После прекращения его подачи наступает диффузная гипоксия, и чтобы ее прекратить, некоторое время вводится чистый кислород. Имеет хорошие анальгезирующие свойства. Противопоказания: воздушные полости в организме (эмболы, воздушные полости при пневмотораксе, пузырьки воздуха в глазном яблоке и др.).

Побочные явления от средства: закись азота способна значительно повысить ВЧД (в меньшей степени – при комбинировании с неингаляционными анестетиками), увеличить появившуюся легочную гипертензию, повысить тонус вен большого и малого круга кровообращения.

Ксенон. Инертный газ, анестезирующие свойства которого открыли в 1951 году. Трудно поддается выработке, так как должен выделяться из воздуха, а очень малое количество газа в воздухе объясняет дороговизну препарата. Но при этом ксеноновый метод обезболивания – идеальный, подходящий даже для особо критических случаев. Благодаря этому пригоден в детской, общей, экстренной, акушерской и нейрохирургии, а также с лечебной целью при болевых приступах и при особенно болезненных манипуляциях, в скорой помощи как догоспитальная помощь при сильных болях или приступах.

Растворяется в крови он крайне плохо, что гарантирует быстрое наступление и окончание действия наркоза.

Противопоказания не обнаружены, но имеются ограничения:

  • вмешательства на сердце, бронхи и трахею при пневмотораксе;
  • способность заполнить воздушные полости (как закись азота): эмболы, кисты и др.
  • диффузионная гипоксия при масочном методе (при эндотрахеальном – нет), во избежание проблем первые минуты проводят вспомогательную вентиляцию легких.

Фармакология ксенона:

  • экологически чистый, без цвета и запаха, безопасный;
  • не вступает в химические реакции;
  • действие и окончание действия анестетика наступают в считаные минуты;
  • не наркотический препарат;
  • спонтанное дыхание сохраняется;
  • оказывает анестезирующее, анальгезирующее и миорелаксирующее действие;
  • стабильные гемодинамика и газообмен;
  • общая анестезия наступает при вдыхании 65-70% смеси ксенона с кислородом, анальгезия – при 30-40%.

Применять ксеноновый способ возможно самостоятельно, но также с ним хорошо комбинируются и многие препараты: ненаркотические и наркотические анальгетики, транквилизаторы, и внутривенные седативные средства.

Общую анестезию можно индуцировать и поддер­живать ингаляционным или внутривенным путем. Ингаляционные анестетики включают галотан, энфлуран, изофлуран, севофлуран и десфлуран.

Гало­тан - это прототипичный ингаля­ционный анестетик; его использование уменьши­лось после появления изофлурана и севофлурана. Энфлуран редко применяют у детей.

Минимальной альвеолярной концентрацией ингаляционного анестетика (МАК) называется его альвеолярная концентрация, обеспечивающая достаточную глубину наркоза для проведения хи­рургической у половины пациентов. В случае сильных ингаляционных агентов альвеолярная концентрация анестетика отражает его концен­трацию в артериальной крови, перфузирующей мозг. Таким образом, величина МАК определяет его анестезирующую активность препарата. МАК зависит от возраста, у недоношенных грудных детей она ниже, чем у доношенных, и снижается в период от младенческого до подросткового возраста. В под­ростковом возрасте МАК снова повышается, а по­сле снижается. Ингаляционные анестетики плохо растворимы в крови, но быстро достигают равно­весия между альвеолярным газом и кровью. Чем ниже растворимость анестетика, тем быстрее индукция анестезии, выход из нее. Севофлуран (0,69) и десфлуран (0,42) имеют более низкий коэффициент распределения в крови (в состоянии равновесия отношение концентрации анестетика в крови сравнимо с его концентрацией в альвеолярном газе), чем галотан (2,4).

Респираторные эффекты

К преимуществам ингаляционных анестетиков относятся быстрая индукция анестезии, быстрый выход из нее, удоб­ный респираторный путь доставки и выведения анестетиков и их способность вызывать глубокую аналгезию и амнезию. Однако все ингаляцион­ные анестетики раздражают дыхательные пути, в низких дозах могут вызвать ларингоспазм, а так­же зависимо от дозы угнетают вентиляцию. Одна МАК анестетика подавляет минутную вен­тиляцию примерно на 25%, что умень­шает дыхательный объем, снижает частоту дыхания, а следовательно, к увеличению выдыхае­мого С02 и Расо2. Одна МАК анестетика снижает также объем выдоха легких примерно на 30 % ниже ФОЕ. При небольшом легочном объеме снижает­ся эластичность легких, увеличивается общее ле­гочное сопротивление, повышаются работа легких и внутрилегочное артериовенозное шунтирование и усиливается рестриктивный легочный процесс. Ингаляционные анестетики также сдвигают впра­во кривую С02, тем самым частично снижая уве личение частоты вентиляции в минуту при повышении Расо2.

Ингаляционные анестетики могут индуцировать апноэ и гипоксию у недоношенных грудных детей и новорожденных, поэтому их нечасто применяют у них. При общей анестезии всегда необходима эндотрахеальная интубация и контролируемая ИВЛ. Старшие дети и взросыле во время коротких операций, если возможно, дышат спон­танно через маску или через введенную в гортань трубку без управляемой вентиляции. При сниже­нии объем выдоха легких и усиленной работе ды­хательных мышц всегда необходимо повышение напряжения кислорода во вдыхаемом воздухе.

Действие на сердечно-сосудистую систему

Ингаляционные анестетики снижают минутный объем сердца и вызывают расширение перифериче­ских сосудов, поэтому часто приводят к гипотензии, особенно при гиповолемии. Гипотензив­ное действие более выражено у новорожденных, чем у старших детей и взрослых. Ингаляционные анестетики также частично подавляют реакцию ба­рорецепторов и ЧСС. Одна МАК галотана снижает минутный объем сердца приблизительно на 25%. Фракция выброса снижается также примерно на 24%. При одной МАК галотана ЧСС часто увели­чивается; однако повышение концентрации ане­стетика может вызвать брадикардию, и выражен­ная брадикардия во время анестезии указывает на передозировку анестетика. Галотан и родственные ингаляционные агенты увеличивают чувствитель­ность сердца к катехоламинам, что может привести к . Ингаляционные анестетики снижают вазомоторный ответ легких на гипоксию в легочной циркуляции, что вносит свой вклад в развитие гипоксемии во время анестезии.

Ингаляционные анестетики снижают снабжение кислородом. В периоперационном периоде катаболизм усиливается и потребность в кислороде возрастает. Поэтому возможно резкое несоответствие потребности в кислороде с его обеспечением. Отражением этого дисбаланса может быть метаболический ацидоз. В связи с подавляющим действием на сердце, сосуды применение ингаляционных анестетиков у грудных детей ограничено, но они широко используются для индукции поддержания наркоза у старших детей и взрослых.

Все ингаляционные анестетики рас­ширяют сосуды мозга, но галотан более активно, чем севофлуран или изофлуран. Поэтому у людей с повышенным ВЧД, нарушенной перфузией головного мозга или травмой головы, а также у новорожденных с риском внутрижелудочкового кровоизлияния галотан и другие ингаляционные агенты следует применять с крайней осторожнос­тью. Хотя ингаляционные анестетики уменьшают потребление кислорода мозгом, они могут непро­порционально снизить кровообращение и тем са­мым ухудшить снабжение мозга кислородом.

Статью подготовил и отредактировал: врач-хирург