Открытие физических законов по ричарду фейнману. Презентация по физике " великие физики и их открытия"

Зарождение и развитие физики как науки. Физика - одна из древнейших наук о природе. Первыми физиками были греческие мыслители, которые предприняли попытку объяснить наблюдаемые явления природы. Величайшим из древних мыслителей был Аристотель (384-322 pp. До н. Н.э.), который ввел слово «<{> vai ?,» («фюзис»)

Что в переводе с греческого означает природа. Но не подумайте, что "Физика" Аристотеля хоть как-то похожа на современные учебники по физике. Нет! В ней вы не найдете ни одного описания опыта или прибора, ни рисунка или чертежа, ни одной формулы. В ней - философские размышления о вещах, о времени, о движении вообще. Такими же были все труды ученых-мыслителей античного периода. Вот как римский поэт Лукреций (ок. 99-55 pp. До н. Н.э.) описывает в философской поэме «О природе вещей» движение пылинок в солнечном луче: От древнегреческого философа Фалеса (624-547 pp. До н. Э) берут начало наши знания по электричеству и магнетизму, Демокрит (460-370 pp. до н. э) является основоположником учения о строении вещества, именно он предположил, что все тела состоят из мельчайших частиц - атомов, Евклиду (III в. до н. н.э.) принадлежат важные исследования в области оптики - он впервые сформулировал основные законы геометрической оптики (закон прямолинейного распространения света и закон отражения), описал действие плоских и сферических зеркал.

Среди выдающихся ученых и изобретателей этого периода первое место занимает Архимед (287-212 pp. До н. Н.э.). Из его работ «О равновесии плоскостей», «О плавающих телах», «О рычаги» начинают свое развитие такие разделы физики, как механика, гидростатика. Яркий инженерный талант Архимеда проявился в сконструированных им механических устройствах.

С середины XVI в. наступает качественно новый этап развития физики - в физике начинают применять эксперименты и опыты. Одним из первых является опыт Галилея с бросания ядра и пули с Пизанской башни. Этот опыт стал знаменитым, поскольку его считают «днем рождения» физики как экспериментальной науки.

Мощным толчком к формированию физики как науки стали научные труды Исаака Ньютона. В работе «Математические начала натуральной философии» (1684 г.) он разрабатывает математический аппарат для объяснения и описания физических явлений. На сформулированных им законах было построено так называемое классическое (Ньют-новский) механику.

Быстрый прогресс в изучении природы, открытие новых явлений и законов природы способствовали развитию общества. Начиная с конца XVIII в., Развитие физики вызывает бурное развитие техники. В это время появляются и совершенствуются паровые машины. В связи с широким их использованием в производстве и на транспорте этот период времени называют «возрастом пары». Одновременно углубленно изучаются тепловые процессы, в физике выделяется новый раздел - термодинамика. Наибольший вклад в исследовании тепловых явлений принадлежит С. Карно, Р. Клаузиуса, Д. Джоуля, Д. Менделеев, Д. Кельвину и многим другим.

Физика – наука, которая изучает структуру и эволюцию мира, а также является основной и важной областью естествознания. Слово «фюзис» с греческого языка означает – природа. Основой всего естествознания и природы являются законы физики.

Уже в 4 веке Аристотель предал большое значение термину «физика». Масштабность мыслей казались самыми величественными. Казалось, что философия стала больше приближена к физике. Очень важный вопрос объединил их в одну стезю – законы возникновения и функционирования Вселенной. Правда, уже после того как наука стала больше доминировать, стали появляться отдельные подразделения физики.
В русский язык эта наука зашла лишь после появления учебников физики. Автором является – М.В. Ломоносов. Вот, что касается, отечественной учебной книги, то автором стал – Страхов. Подобный маневр русского академика изменил всю систему образования того времени.

В нашем веке физику все стали рассматривать каждый по – своему. Ведь, если подумать, то отличие современного общества от того что было ранее, напрямую зависит от физических открытий. Например, исследования электромагнетизма. Подобные прорывы в науке привели к возникновению телефона. Так, если завести речь об автомобиле, то он возник благодаря термодинамике. Компьютер возник вследствие развития электроники.

Подобные процессы не стоят на месте, а лишь усовершенствуются. Новые открытия способствуют улучшению промышленности и техники. Следует задуматься о новых загадках природы, которые требуют объяснения. В этом поможет – физика.

Конечно, не смотря на то, что наука зашла слишком далеко, невозможно объяснить с первого раза все явления природы. Основы физических исследований и методов разрабатываются тщательно, исходя из накопленных знаний.

Существует: экспериментальная и теоретическая физика. Если рассмотреть экспериментальную, то теории и законы опираются только на данные после исследований.

Теоретическая физика обладает несколькими задачами. Любая теория обладает возможностью рассмотреть на экспериментах всю суть «адекватности» явлений. Любое изучение физики несет в себе возможность расшифровать формулировку разнообразных систем.

Области физики многогранны и тем самым интересны. При классической механике верным будет решение, если атомы меньше чем размеры исследуемых объектов. Важно, чтобы гравитационные силы были малы и чтобы скорость объектов была меньше скорости света.

Физики никогда не успокаиваются. Новые особенности обнаруживаются не только в движении планет, новыми свойствами недавно был наделен и космический вакуум, разделяющий планеты. Привычное для нас представление о вакууме как о совершенной пустоте сменилось вполне обоснованной гипотезой, что вакуум при определенных условиях может… рождать на свет элементарные частицы.

Космический вакуум

Космический вакуум действительно нельзя считать пустотой - поле тяготения всегда пронизывает его. А при появлении невероятно сильного электромагнитного или ядерного поля в вакууме могут возникнуть частицы, которые в обычном спокойном состоянии пространства ничем себя не обнаруживают. Сейчас ученые обдумывают эксперименты, которые подтвердили бы или опровергли эту интересную и важную для дальнейшего развития физики гипотезу.

Физики продолжают углубленно изучать не только свойства вакуума, но и структуру твердых тел, предполагая использовать для исследовательских целей все более энергичное излучение с малой длиной волны. Советский физик А. Ф. Тулинов и шведские исследователи В. Домей и К. Бьерквист «осветили» кристаллы не рентгеновским излучением или электронным лучом, а… пучком протонов. Рассеиваясь на ядрах атомов кристаллов, протоны дали возможность получить на фотопленке очень четкое изображение кристаллической решетки, определить положение отдельных атомов. Плавно изменяя энергию пучка протонов и глубину их проникновения в исследуемые образцы, авторы нового метода структурного анализа смогли получить снимки дефектов кристаллической решетки на различной глубине от поверхности без разрушения кристаллов.

Кристаллы различных веществ, пристально рассмотренные под ярким «светом» частиц высоких энергий, оказались отнюдь не похожими на холодное царство из неподвижно застывших геометрически правильных рядов атомов. Под влиянием вводимых примесей, при воздействии температуры, давления, электрического и магнитного полей в столь невозмутимых внешне кристаллах могут происходить удивительные превращения: например, в одних из них рост температуры вызывает исчезновение металлических свойств, в других наблюдается обратная картина - изолирующий кристалл, не пропускавший электрический ток, становится металлом.

Линии электропередач и спутники Земли - символы крупных технических достижений физики XIX и XX веков. Какие изобретения и открытия ознаменуют успехи физики будущих веков?

Советский физик Э. Л. Нагаев теоретически предсказал, что при определенных условиях только отдельные области в кристаллах будут изменять свои свойства. Кристаллы некоторых полупроводников становятся при этом похожими на… пудинги с изюмом: изюминки представляют собой проводящие шарики, разделенные диэлектрическими прослойками, и в целом такой кристалл не пропускает электрический ток. Тепло и магнитное поле могут заставить шарики соединиться друг с другом, изюминки будто растворяются в пудинге - и кристалл превращается в проводник электрического тока. Эксперименты вскоре подтвердили возможность осуществления в кристаллах подобных переходов…

Не все, однако, удается предсказать и рассчитать заранее. Часто толчком для создания новых теорий служат непонятные результаты экспериментов в лаборатории или странные явления, которые внимательному наблюдателю удается подметить в Природе.

Солитоны

Одно из таких явлений - солитоны , или одиночные волны, которые сейчас активно обсуждаются и исследуются многими физиками,- впервые было замечено… в августе 1834 года. Английский ученый первой половины прошлого века Дж. Скотт Рассел оставил нам такое описание: «Я следил за движением бота, который быстро тащила по узкому каналу пара лошадей. Когда он внезапно остановился, масса воды в канале, которую приводил в движение бот, пришла вблизи носа судна в состояние сильного волнения, внезапно оторвалась от него, покатилась вперед с огромной скоростью, приняв форму большого уединенного возвышения, округлого, гладкого и хорошо выраженного, которое продолжило свой путь по каналу без видимого изменения формы или уменьшения скорости».

Только через полвека теоретики получили уравнение движения такой одинокой волны. В наши дни волны-солитоны обнаружены при особых условиях на воде, в потоке заряженных ионов, во время распространения звука, оптических волн, лучей лазера и даже… при движении электрического тока.

Волна, которую мы привыкли видеть и описывать как равномерное колебание многих частиц среды или электромагнитного поля, неожиданно превращается в сгусток энергии, одиноко и быстро бегущий в любой среде - в жидкости, газе, твердом теле. Солитоны несут с собой всю энергию обычной волны, и, если причины их возникновения будут хорошо изучены, возможно, в недалеком будущем именно они начнут переносить энергию любого вида, необходимую человеку, на большие расстояния, например снабжать жилые дома электричеством, полученным полупроводниковыми фотоэлементами в космосе из солнечного света…

Полупроводниковые фотоэлементы и фотоэлектронные умножители, которые показывает автор книги, мгновенно превращают световое излучение любой длины волны в электрическую энергию, чутко откликаются на свет Солнца и далеких звезд.

Солитоны обладают свойствами не только волн, но и частиц. Японский физик Нарюши Асано, давно изучающий физические процессы, приводящие к возникновению одиноких волн, считает, что ученые должны прежде всего получить ответы на два важных вопроса: какую роль играют солитоны в природе и являются ли они элементарными частицами?

Лямбда-гиперон

Непрерывен поиск ученых в области элементарных частиц, в разработке теории, которая объединила бы теперь все виды взаимодействий, обнаруженных в природе. Физики-теоретики считают также, что во Вселенной могут существовать атомы, чьи ядра состоят не только из нейтронов и протонов. Один вид таких необычных ядер был обнаружен экспериментально в космических лучах польскими физиками еще в 1935 году: кроме протонов и нейтронов, в них оказалась еще одна сравнительно долгоживущая и сильно взаимодействующая частица - лямбда-гиперон . Такие ядра получили название гиперядер.

Сейчас физики изучают поведение гиперядер, рожденных на ускорителях, и внимательно анализируют состав приходящих к Земле космических лучей, пытаясь обнаружить еще более необычные частицы вещества.

Просторы Вселенной продолжают приносить физикам новые открытия. Несколько лет назад в космосе была обнаружена гравитационная линза. Свет, излучаемый одним из квазаров, далекой и яркой звездой, отклоняясь полем тяготения галактик, расположенных между Землей и квазаром, создавал иллюзию, что в этом участке неба расположены… два квазара-близнеца.

Ученые доказали, что раздвоение изображения возникает по законам преломления света, только этот оптический «прибор» имеет огромные размеры!

Воссоздать Природу на лабораторном столе

Но не только теоретические модели и наблюдения за природой помогают ученым понять суть мира малого и большого. Изобретательные физики-экспериментаторы умудряются воссоздать Природу на лабораторном столе.

Недавно в научном журнале «Физика плазмы» появилось сообщение об удачной попытке воспроизвести в земных условиях… вспышки на Солнце. Группа исследователей Физического института им. П. Н. Лебедева в Москве сумела смоделировать в лабораторной установке магнитное поле Солнца; в момент резкого разрыва тока, протекавшего по слою проводящего газа в этом поле, возникло сильное рентгеновское излучение - точь-в-точь как на Солнце в момент вспышки! Ученым стало яснее, отчего возникают грозные явления Природы - солнечные вспышки…

Физики из Грузии воссоздали звездные процессы и провели изящные и интересные опыты, вращая (с внезапными остановками) относительно друг друга цилиндрические и сферические сосуды, заполненные жидким гелием, при тех очень низких температурах, когда гелий становится сверхтекучим. Физики очень похоже имитировали «звездотрясение» пульсаров, которое может произойти, если внешний «нормальный» слой радиоисточника в какой-то момент начнет вращаться с меньшей скоростью, чем сверхтекучее ядро пульсара.

Оказывается, даже явления, происходящие на расстоянии нескольких миллиардов световых лет от нас, можно экспериментально получить на Земле…

Исследователи узнают много интересного и необычного о Природе в их вечном стремлении к истине. Несмотря на все величие достижений науки XX века, физики не забывают слова одного из их коллег: «…существование людей зависит от любознательности и сострадания. Любознательность без сострадания - бесчеловечна. Сострадание без любознательности - бес-полезно…»

Многих ученых сейчас интересуют не только грандиозные процессы выделения энергии нейтронными звездами или мгновенные превращения элементарных частиц; их волнует открытая современной физикой возможность разнообразной помощи биологам и медикам, помощи человеку теми великолепными устройствами и сложными приборами, которыми владеют пока лишь представители точных наук.

Физика и философия

Одно очень важное свойство роднит физику с философией, из которой она вышла,- физика может убедительно, с помощью цифр и фактов ответить на вопрос любознательного человека: велик или мал мир, в котором мы живем? И тут же возникает вопрос-близнец: велик или мал человек?

Ученый и писатель Блез Паскаль называл человека «мыслящим тростником», подчеркивая тем самым, что человек хрупок, слаб и беззащитен перед явно превосходящими силами неживой Природы; единственное оружие и защита человека - его мысль.

Вся история физики убеждает, что обладание этим неосязаемым и невидимым оружием дает возможность человеку проникнуть необычайно глубоко в мир бесконечно малых элементарных частиц и достичь самых далеких уголков нашей необъятной Вселенной.

Физика показывает нам, как велик и в то же время близок мир, в котором мы живем. Физика позволяет почувствовать человеку все свое величие, всю необыкновенную силу мысли, которая делает его самым могущественным существом на свете.

«Я не становлюсь богаче, сколько бы ни приобретал земель…- писал Паскаль,- а вот с помощью мысли я охватываю Вселенную».

Во время своих экспериментов Галилео обнаружил, что тяжелые предметы падают быстрее легких из-за меньшего воздушного сопротивления: воздух мешает легкому объекту сильнее, чем тяжелому.

Решение Галилея проверить закон Аристотеля стало поворотным моментом в науке, оно ознаменовало начало проверки всех общепринятых законов опытным путем. Опыты Галилея с падающими телами привели к нашему начальному пониманию ускорения под действием гравитации.

Всемирное тяготение

Говорят, что однажды Ньютон сидел под яблоней в саду и отдыхал. Вдруг он увидел, как с ветки упало яблоко. Этот простой инцидент заставил его задуматься, почему яблоко упало вниз, в то время, как Луна все время оставалась в небе. Именно в этот момент в мозгу молодого Ньютона свершилось открытие: он понял, что на яблоко и Луну действует единая сила гравитации.


Ньютон представил себе, что на весь фруктовый сад действовала сила, которая притягивала к себе ветки и яблоки. Его более важно то, что он распространил эту силу до самой Луны. Ньютон понял, что сила притяжения есть везде, до него никто до этого не додумывался.

Согласно этому закону, гравитация влияет на все тела во Вселенной, включая яблоки, луны и планеты. Сила притяжения такого крупного тела, как Луна, может провоцировать такие явления, как приливы и отливы океанов на Земле.

Вода в той части океана, которая находится ближе к Луне, испытывает большее притяжение, поэтому Луна, можно сказать, перетягивает воду из одной части океана в другую. А так, как Земля вращается в противоположном направлении, эта задержанная Луной вода оказывается дальше привычных берегов.

Понимание Ньютоном того, что у каждого предмета есть собственная сила притяжения, стало великим научным открытием. Однако, его дело было еще не завершено.

Законы движения

Возьмем, например хоккей. Бьете клюшкой по шайбе, и она скользит по льду. Это первый закон: под действием силы предмет движется. Если бы не было трения о лед, то шайба скользила бы бесконечно долго. Когда вы бьете клюшкой по шайбе, то придаете ей ускорение.

Второй закон гласит: ускорение прямо пропорционально приложенной силе и обратно пропорционально массе тела.

А согласно третьему закону при ударе шайба действует на клюшку с такой же силой, как клюшка на шайбу, т.е. сила действия равна силе противодействия.

Законы движения Ньютона были смелым решением объяснять механику функционирования Вселенной, они стали основой классической физики.

Второй закон термодинамики

Наука о термодинамике – это наука о тепле, которая преобразуется в механическую энергию. От нее зависела вся техника во время промышленной революции.

Тепловая энергия может быть преобразована в энергию движения, например, путем вращения коленчатого вала или турбины. Важнее всего выполнить как можно больше работы, используя как можно меньше топлива. Это наиболее экономически выгодно, поэтому люди стали изучать принципы работы паровых двигателей.


Среди тех, кто занимался этим вопросом, был немецкий ученый . В 1865 году он сформулировал Второй закон термодинамики . Согласно этому закону, при любом энергетическом обмене, например, во время нагревания воды в паровом котле, часть энергии пропадает. Клаузиус ввел в оборот слово энтропия , объясняя с его помощью ограниченную эффективность паровых двигателей. Часть тепловой энергии теряется во время преобразования в механическую.

Это утверждение изменило наше понимание того, как функционирует энергия. Не существует теплового двигателя, который был бы эффективен на 100%. Когда вы едете на машине, только 20% энергии бензина действительно тратится на движение. Куда девается остальная часть? На нагревание воздуха, асфальта и шин. Цилиндры в блоке цилиндров нагреваются и изнашиваются, а детали ржавеют. Грустно думать о том, насколько расточительны такие механизмы.

Хотя Второй закон термодинамики был основой промышленной революции, следующее великое открытие привело мир в новое, его современное состояние.

Электромагнетизм


Ученые научились создавать магнитную силу с помощью электричества, когда пустили ток по завитому проводу. В результате получился электромагнит. Как только подается ток, возникает магнитное поле. Нет напряжения – нет поля.

Электрогенератор в своей самой простейшей форме является витком проволоки между полюсами магнита. Майкл Фарадей обнаружил, что когда магнит и проволока находятся на близком расстоянии, по проволоке проходит ток. По этому принципу работают все электрогенераторы.

Фарадей вел записи о своих экспериментах, но шифровал их. Тем не менее они были по достоинству оценены физикомДжеймсом Клерком Максвеллом , который использовал их, чтобы еще лучше понять принципы электромагнетизма . Максвелл позволил человечеству понять, как электричество распределяется по поверхности проводника.

Если вы хотите знать, каким был бы мир без открытий Фарадея и Максвелла, то представьте себе, что электричество не существует: не было бы радио, телевидения, мобильных телефонов, спутников, компьютеров и всех средств связи. Представьте себе, что вы в 19 веке, потому что без электричества вы бы именно там и оказались.

Совершая открытия, Фарадей и Максвелл не могли знать, что их труд вдохновил одного юношу на раскрытие тайн света и на поиск его связи с величайшей силой Вселенной. Этим юношей был Альберт Эйнштейн.

Теория относительности

Эйнштейн однажды сказал, что все теории нужно объяснять детям. Если они не поймут объяснения, то значит теория бессмысленна. Будучи ребенком, Эйнштейн однажды прочитал детскую книжку об электричестве, тогда оно только появлялось, и простой телеграф казался чудом. Эта книжка была написана неким Бернштейном, в ней он предлагал читателю представить себя едущим внутри провода вместе с сигналом. Можно сказать, что тогда в голове Эйнштейна и зародилась его революционная теория.


В юношестве, вдохновленный своим впечатлением от той книги, Эйнштейн представлял себе, как он двигается вместе с лучом света. Он обдумывал эту мысль 10 лет, включая в размышления понятие света, времени и пространства.

В мире, который описывал Ньютон, время и пространство были отделены друг от друга: когда на Земле 10 часов утра, то такое же время было и на Венере, и на Юпитере, и по всей Вселенной. Время было тем, что никогда не отклонялось и не останавливалось. Но Эйнштейн по-другому воспринимал время.

Время – это река, которая извивается вокруг звезд, замедляясь и ускоряясь. А если пространство и время могут изменяться, то меняются и наши представления об атомах, телах и вообще о Вселенной!

Эйнштейн демонстрировал свою теорию с помощью так называемых мыслительных экспериментов. Самый известный из них – это «парадокс близнецов» . Итак, у нас есть двое близнецов, один из которых улетает в космос на ракете. Так как она летит почти со скоростью света, время внутри нее замедляется. После возвращения этого близнеца на Землю оказывается, что он моложе того, кто остался на планете. Итак, время в разных частях Вселенной идет по-разному. Это зависит от скорости: чем быстрее вы движетесь, тем медленнее для вас идет время.

Этот эксперимент в какой-то степени проводится с космонавтами на орбите. Если человек находится в открытом космосе, то время для него идет медленней. На космической станции время идет медленней. Этот феномен затрагивает и спутники. Возьмем, например, спутники GPS: они показывают ваше положение на планете с точностью до нескольких метров. Спутники движутся вокруг Земли со скоростью 29000 км/ч, поэтому к ним применимы постулаты теории относительности. Это нужно учитывать, ведь если в космосе часы идут медленнее, то синхронизация с земным временем собьется и система GPS не будет работать.

E=mc 2

Вероятно, это самая известная в мире формула. В теории относительности Эйнштейн доказал, что при достижении скорости света условия для тела меняются невообразимым образом: время замедляется, пространство сокращается, а масса растет. Чем выше скорость, тем больше масса тела. Только подумайте, энергия движения делает вас тяжелее. Масса зависит от скорости и энергии. Эйнштейн представил себе, как фонарик испускает луч света. Точно известно, сколько энергии выходит из фонарика. При этом он показал, что фонарик стал легче, т.е. он стал легче, когда начал испускать свет. Значит E – энергия фонарика зависит от m – массы в пропорции, равной c 2 . Все просто.

Эта формула показывала и на то, что в маленьком предмете может быть заключена огромная энергия. Представьте себе, что вам бросают бейсбольный мяч и вы его ловите. Чем сильнее его бросят, тем большей энергией он будет обладать.

Теперь что касается состояния покоя. Когда Эйнштейн выводил свои формулы, он обнаружил, что даже в состоянии покоя тело обладает энергией. Посчитав это значение по формуле, вы увидите, что энергия поистине огромна.

Открытие Эйнштейна было огромным научным скачком. Это был первый взор на мощь атома. Не успели ученые полностью осознать это открытие, как случилось следующее, которое вновь повергло всех в шок.

Квантовая теория

Квантовый скачок – самый малый возможный скачок в природе, при этом его открытие стало величайшим прорывом научной мысли.

Субатомные частицы, например, электроны, могут передвигаться из одной точку в другую, не занимая пространство между ними. В нашем макромире это невозможно, но на уровне атома – это закон.

Квантовая теория появилась в самом начале 20 века, когда случился кризис в классической физике. Было открыто множество феноменов, которые противоречили законам Ньютона. Мадам Кюри , например, открыла радий, который сам по себе светится в темноте, энергия бралась из ниоткуда, что противоречило закону сохранения энергии. В 1900 году люди считали, что энергия непрерывна, и что электричество и магнетизм можно было бесконечно делить на абсолютно любые части. А великий физик Макс Планк дерзко заявил, что энергия существует в определенных объемах – квантах .


Если представить себе, что свет существует только в этих объемах, то становятся понятны многие феномены даже на уровне атома. Энергия выделяется последовательно и в определенном количестве, это называется квантовым эффектом и означает, что энергия волнообразна.

Тогда думали, что Вселенная была создана совсем по-другому. Атом представлялся чем-то, напоминающим шар для боулинга. А как может шар иметь волновые свойства?

В 1925 году австрийский физик , наконец, составил волновое уравнение, которое описывало движение электронов. Внезапно стало возможным заглянуть внутрь атома. Получается, что атомы одновременно являются и волнами, и частицами, но при этом непостоянными.

Можно ли вычислить возможность того, что человек разделится на атомы, а потом материализуется по другую сторону стены? Звучит абсурдно. Как можно, проснувшись утром, оказаться на Марсе? Как можно пойти спать, а проснуться на Юпитере? Это невозможно, но вероятность этого подсчитать вполне реально. Данная вероятность очень низка. Чтобы это случилось, человеку нужно было бы пережить Вселенную, а вот у электронов это случается постоянно.

Все современные «чудеса» вроде лазерных лучей и микрочипов работают на основании того, что электрон может находиться сразу в двух местах. Как это возможно? Не знаешь, где точно находится объект. Это стало таким трудным препятствием, что даже Эйнштейн бросил заниматься квантовой теорией, он сказал, что не верит, что Господь играет во Вселенной в кости.

Несмотря на всю странность и неопределенность, квантовая теория остается пока что лучшим нашим представлением о субатомном мире.

Природа света

Древние задавались вопросом: из чего состоит Вселенная? Они считали, что она состоит из земли, воды, огня и воздуха. Но если это так, то что же такое свет? Его нельзя поместить в сосуд, нельзя дотронуться до него, почувствовать, он бесформенный, но присутствует везде вокруг нас. Он одновременно везде и нигде. Все видели свет, но не знали, что это такое.

Физики пытались ответить на этот вопрос на протяжении тысячи лет. над поиском природы света работали величайшие умы, начиная с Исаака Ньютона. Сам Ньютон использовал солнечный свет, разделенный призмой, чтобы показать все цвета радуги в одном луче. Это значило, что белый свет состоит из лучей всех цветов радуги.


Ньютон показал, что красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета могут быть объединены в белый свет. Это привело его к мысли, что свет делится на частицы, которые он назвал корпускулами. Так появилась первая световая теория – корпускулярная.

Представьте себе морские волны: любой человек знает, что когда одна из волн сталкивается с другой под определенным углом, обе волны смешиваются. Юнг проделал то же самое со светом. Он сделал так, чтобы свет от двух источников пересекался, и место пересечения было отчетливо видно.

Итак, тогда было все две световые теории: корпускулярная у Ньютона и волновая у Юнга . И тогда за дело взялся Эйнштейн, который сказал, что возможно, обе теории имеют смысл. Ньютон показал, что у света есть свойства частиц, а Юнг доказал, что свет может иметь волновые свойства. Все это – две стороны одного и того же. Возьмем, например, слона: если вы возьмете его за хобот, то подумаете, что это змея, а если обхватите его ногу, то вам покажется, что это дерево, но на самом деле слон обладает качествами и того, и другого. Эйнштейн ввел понятие дуализма света , т.е. наличия у света свойств как частиц, так и волн.

Чтобы увидеть свет таким, каким мы знает его сегодня, потребовалась работа трех гениев на протяжении трех веков. Без их открытий мы, возможно, до сих пор жили бы в раннем Средневековье.

Нейтрон

Атом так мал, что его трудно себе представить. В одну песчинку помещается 72 квинтиллиона атомов. Открытие атома привело к другому открытию.


О существовании атома люди знали уже 100 лет назад. Они думали, что электроны и протоны равномерно распределены в нем. Это назвали моделью типа «пудинг с изюмом», потому что считалось, что электроны были распределены внутри атома как изюм внутри пудинга.

В начале 20 века провел эксперимент с целью еще лучше исследовать структуру атома. Он направлял на золотую фольгу радиоактивные альфа-частицы. Он хотел узнать, что произойдет, когда альфа-частицы ударятся о золото. Ничего особенного ученый не ожидал, так как думал, что большинство альфа-частиц пройдут сквозь золото, не отражаясь и не изменяя направление.

Однако, результат был неожиданным. По его словам, это было то же самое, что выстрелить 380-мм снарядом по куску материи, и при этом снаряд отскочил бы от нее. Некоторые альфа-частицы сразу отскочили от золотой фольги. Это могло произойти, только если бы внутри атома было небольшое количество плотного вещества, оно не распределено как изюм в пудинге. Резерфорд назвал это небольшое количество вещества ядром .

Чедвик провел эксперимент, который показал, что ядро состоит из протонов и нейтронов. Для этого он использовал очень умный метод распознавания. Для перехвата частиц, которые выходили из радиоактивного процесса, Чедвик применял твердый парафин.

Сверхпроводники

Лаборатория Ферми обладает одним из крупнейших в мире ускорителем частиц. Это 7-километровое подземное кольцо, в котором субатомные частицы ускоряются почти до скорости света, а затем сталкиваются. Это стало возможным только после того, как появились сверхпроводники .

Сверхпроводники были открыты примерно в 1909 году. Голландский физик по имени стал первым, кто понял, как превратить гелий из газа в жидкость. После этого он мог использовать гелий в качестве морозильной жидкости, а ведь он хотел изучать свойства материалов при очень низких температурах. В то время людей интересовало то, как электрическое сопротивление металла зависит от температуры – растет она или падает.


Он использовал для опытов ртуть, которую он умел хорошо очищать. Он помещал ее в специальный аппарат, капая ей в жидкий гелий в морозильной камере, понижая температуру и измеряя сопротивление. Он обнаружил, что чем ниже температура, тем ниже сопротивление, а когда температуры достигла минус 268 °С, сопротивление упало до нуля. При такой температуре ртуть проводила бы электричество без всяких потерь и нарушений потока. Это и называетсясверхпроводимостью .

Сверхпроводники позволяют электропотоку двигаться без всяких потерь энергии. В лаборатории Ферми они используются для создания сильного магнитного поля. Магниты нужны для того, чтобы протоны и антипротоны могли двигаться в фазотроне и огромном кольце. Их скорость почти равняется скорости света.

Ускоритель частиц в лаборатории Ферми требует невероятно мощного питания. Каждый месяц на то, чтобы охладить сверхпроводники до температуры минус 270 °С, когда сопротивление становится равным нулю, тратится электричество на миллион долларов.

Теперь главная задача – найти сверхпроводники, которые бы работали при более высоких температурах и требовали бы меньше затрат.

В начале 80-х группа исследователей швейцарского отделения компании IBM обнаружила новый тип сверхпроводников, которые обладали нулевым сопротивлением при температуре на 100 °С выше, чем обычно. Конечно, 100 градусов выше абсолютно нуля – это не та температура, что у вас в морозильнике. Нужно найти такой материал, который был бы сверхпроводником при обычной комнатной температуре. Это был бы величайший прорыв, который стал бы революцией в мире науки. Все, что сейчас работает на электрическом токе, стало бы гораздо эффективнее. С разработкой ускорителей, которые могли сталкивать субатомные частицы на скорости света, человек узнал о существовании десятков других частиц, на которые разбивались атомы. Физики стали называть все это «зоопарком частиц».

Американский физик Мюррей Гелл-Ман заметил закономерность в ряде новооткрытых частиц «зоопарка». Он делил частицы по группам в соответствии с обычными характеристиками. По ходу он изолировал мельчайшие компоненты ядра атома, из которых состоят сами протоны и нейтроны.

Открытые Гелл-Маном кварки были для субатомных частиц тем же, чем была периодическая таблица для химических элементов. За свое открытие в 1969 году Мюррею Гелл-Ману была присуждена Нобелевская премия в области физики. Его классификация мельчайших материальных частиц упорядочила весь их «зоопарк».

Хотя Гелл-Маном был уверен в существовании кварков, он не думал, что кто-то сможет их в действительности обнаружить. Первым подтверждением правильности его теорий были удачные эксперименты его коллег, проведенные на Стэнфордском линейном ускорителе. В нем электроны отделялись от протонов, и делался макроснимок протона. Оказалось, что в нем было три кварка .

Ядерные силы

Наше стремление найти ответы на все вопросы о Вселенной привело человека как внутрь атомов и кварков, так и за пределы галактики. Данное открытие – результат работы многих людей на протяжении столетий.

После открытий Исаака Ньютона и Майкла Фарадея ученые считали, что у природы две основные силы: гравитация и электромагнетизм. Но в 20 веке были открыты еще две силы, объединенные одним понятием – атомная энергия. Таким образом, природных сил стало четыре.

Каждая сила действует в определенном спектре. Гравитация не дает нам улететь в космос со скоростью 1500 км/ч. Затем у нас есть электромагнитные силы – это свет, радио, телевидение и т.д. кроме этого существую еще две силы, поле действия которых сильно ограничено: есть ядерное притяжение, которое не дает ядру распасться, и есть ядерная энергия, которая излучает радиоактивность и заражает все подряд, а также, кстати, нагревает центр Земли, именно благодаря ей центр нашей планеты не остывает вот уже несколько миллиардов лет – это действие пассивной радиации, которая переходи в тепло.

Как обнаружить пассивную радиацию? Это возможно благодаря счетчикам Гейгера . Частицы, которые высвобождаются, когда расщепляется атом, попадают в другие атомы, в результате чего создается небольшой электроразряд, который можно измерить. При его обнаружении счетчик Гейгера щелкает.

Как же измерить ядерное притяжение? Тут дело обстоит труднее, потому что именно эта сила не дает атому распасться. Здесь нам нужен расщепитель атома. Нужно буквально разбить атом на осколки, кто-то сравнил этот процесс со сбросом пианино с лестницы с целью разобраться в принципах его работы, слушая звуки, которые пианино издает, ударяясь о ступеньки. (weak force, слабое взаимодействие) и ядерная энергия (strong force, сильное взаимодействие). Последние две называются квантовыми силами, их описание можно объединить в нечто под названием стандартной модели. Возможно, это самая уродливая теория в истории науки, но она действительно возможна на субатомном уровне. Теория стандартной модели претендует на то, чтобы стать высшей, но от этого она не перестает быть уродливой. С другой стороны, у нас есть гравитация – великолепная, прекрасная система, она красива до слез – физики буквально плачут, видя формулы Эйнштейна. Они стремятся объединить все силы природы в одну теорию и назвать ее «теория всего». Она объединила бы все четыре силы в одну суперсилу, которая существует с начала времен.

Неизвестно, сможем ли мы когда-нибудь открыть суперсилу, которая включала бы в себя все четыре основные силы Природы и сможем ли создать физическую теорию Всего. Но одно известно точно: каждое открытие ведет к новым исследованиям, а люди – самый любопытный вид на планете – никогда не перестанут стремиться понимать, искать и открывать.

Становление физики (до 17 в.). Физические явления окружающего мира издавна привлекали внимание людей. Попытки причинного объяснения этих явлений предшествовали созданию Ф. в современном смысле этого слова. В греко-римском мире (6 в. до н. э. – 2 в. н. э.) впервые зародились идеи об атомном строении вещества (Демокрит , Эпикур , Лукреций),была разработана геоцентрическая система мира (Птолемей), установлены простейшие законы статики (правило рычага), открыты закон прямолинейного распространения и закон отражения света, сформулированы начала гидростатики (закон Архимеда), наблюдались простейшие проявления электричества и магнетизма.

Итог приобретённых знаний в 4 в. до н. э. был подведён Аристотелем . Физика Аристотеля включала отдельные верные положения, но в то же время в ней отсутствовали многие прогрессивные идеи предшественников, в частности атомная гипотеза. Признавая значение опыта, Аристотель не считал его главным критерием достоверности знания, отдавая предпочтение умозрительным представлениям. В средние века учение Аристотеля, канонизированное церковью, надолго затормозило развитие науки.

Наука возродилась лишь в 15–16 вв. в борьбе со схоластизированным учением Аристотеля. В середине 16 в. Н. Коперник выдвинул гелиоцентрическую систему мира и положил начало освобождению естествознания от теологии. Потребности производства, развитие ремёсел, судоходства и артиллерии стимулировали научные исследования, опирающиеся на опыт. Однако в 15–16 вв. экспериментальные исследования носили в основном случайный характер. Лишь в 17 в. началось систематическое применение экспериментального метода в Ф., и это привело к созданию первой фундаментальной физической теории – классической механики Ньютона.

Формирование физики как науки (начало 17 – конец 18 вв.).

Развитие Ф. как науки в современном смысле этого слова берёт начало с трудов Г. Галилея (1-я половина 17 в.), который понял необходимость математического описания движения. Он показал, что воздействие на данное тело окружающих тел определяет не скорость, как считалось в механике Аристотеля, а ускорение тела. Это утверждение представляло собой первую формулировку закона инерции. Галилей открыл принцип относительности в механике (см. Галилея принцип относительности), доказал независимость ускорения свободного падения тел от их плотности и массы, обосновывал теорию Коперника. Значительные результаты были получены им и в др. областях Ф. Он построил зрительную трубу с большим увеличением и сделал с её помощью ряд астрономических открытий (горы на Луне, спутники Юпитера и др.). Количественное изучение тепловых явлений началось после изобретения Галилсем первого термометра.

В 1-й половине 17 в. началось успешное изучение газов. Ученик Галилея Э. Торричелли установил существование атмосферного давления и создал первый барометр. Р. Бойль и Э. Мариотт исследовали упругость газов и сформулировали первый газовый закон, носящий их имя. В.Снеллиус и Р. Декарт открыли закон преломления света. В это же время был создан микроскоп. Значительный шаг вперёд в изучении магнитных явлений был сделан в самом начале 17 в. У.Гильбертом . Он доказал, что Земля является большим магнитом, и первый строго разграничил электрические и магнитные явления.

Основным достижением Ф. 17 в. было создание классической механики. Развивая идеи Галилея, Х.Гюйгенса и др. предшественников, И. Ньютон в труде "Математические начала натуральной философии" (1687) сформулировал все основные законы этой науки (см. Ньютона законы механики). При построении классической механики впервые был воплощён идеал научной теории, существующий и поныне. С появлением механики Ньютона было окончательно понято, что задача науки состоит в отыскании наиболее общих количественно формулируемых законов природы.

Наибольших успехов механика Ньютона достигла при объяснении движения небесных тел. Исходя из законов движения планет, установленных И. Кеплером на основе наблюдений Т. Браге , Ньютон открыл закон всемирного тяготения (см. Ньютона закон тяготения). С помощью этого закона удалось с замечательной точностью рассчитать движение Луны, планет и комет Солнечной системы, объяснить приливы и отливы в океане. Ньютон придерживался концепции дальнодействия, согласно которой взаимодействие тел (частиц) происходит мгновенно непосредственно через пустоту; силы взаимодействия должны определяться экспериментально. Им были впервые четко сформулированы классические представления об абсолютном пространстве как вместилище материи, не зависящем от её свойств и движения, и абсолютном равномерно текущем времени. Вплоть до создания теории относительности эти представления не претерпели никаких изменений.

Большое значение для развития Ф. имело открытие Л. Гальвани и А. Вольта электрического тока. Создание мощных источников постоянного тока – гальванических батарей – дало возможность обнаружить и изучить многообразные действия тока. Было исследовано химическое действие тока (Г. Дэви , М. Фарадей). В. В. Петров получил электрическую дугу. Открытие Х. К. Эрстедом (1820) действия электрического тока на магнитную стрелку доказало связь между электричеством и магнетизмом. Основываясь на единстве электрических и магнитных явлений, А. Ампер пришёл к выводу, что все магнитные явления обусловлены движущимися заряженными частицами – электрическим током. Вслед за этим Ампер экспериментально установил закон, определяющий силу взаимодействия электрических токов (Ампера закон).

В 1831 Фарадей открыл явление электромагнитной индукции (см. Индукция электромагнитная). При попытках объяснения этого явления с помощью концепции дальнодействия встретились значительные затруднения. Фарадей высказал гипотезу (ещё до открытия электромагнитной индукции), согласно которой электромагнитные взаимодействия осуществляются посредством промежуточного агента – электромагнитного поля (концепция близкодействия). Это послужило началом формирования новой науки о свойствах и законах поведения особой формы материи – электромагнитного поля.

Ещё до открытия этого закона С. Карно в труде "Размышления о движущей силе огня и о машинах, способных развивать эту силу" (1824) получил результаты, послужившие основой для др. фундаментального закона теории теплоты – второго начала термодинамики . Этот закон сформулирован в работах Р. Клаузиуса (1850) и У. Томсона (1851). Он является обобщением опытных данных, свидетельствующих о необратимости тепловых процессов в природе, и определяет направление возможных энергетических процессов. Значительную роль в построении термодинамики сыграли исследования Ж. Л. Гей-Люссака , на основе которых Б. Клапейроном было найдено уравнение состояния идеального газа, обобщённое в дальнейшем Д. И. Менделеевым .

Одновременно с развитием термодинамики развивалась молекулярно-кинетическая теория тепловых процессов. Это позволило включить тепловые процессы в рамки механической картины мира и привело к открытию нового типа законов – статистических, в которых все связи между физическими величинами носят вероятностный характер.

На первом этапе развития кинетической теории наиболее простой среды – газа – Джоуль, Клаузиус и др. вычислили средние значения различных физических величин: скорости молекул, числа их столкновений в секунду, длины свободного пробега и т.д. Была получена зависимость давления газа от числа молекул в единице объёма и средней кинетической энергии поступательного движения молекул. Это позволило вскрыть физический смысл температуры как меры средней кинетической энергии молекул.

Второй этап развития молекулярно-кинетической теории начался с работ Дж. К. Максвелла . В 1859, введя впервые в Ф. понятие вероятности, он нашёл закон распределения молекул по скоростям (см. Максвелла распределение). После этого возможности молекулярно-кинетической теории необычайно расширились и привели в дальнейшем к созданию статистической механики. Л.Больцман построил кинетическую теорию газов и дал статистическое обоснование законов термодинамики. Основная проблема, которую в значительной степени удалось решить Больцману, заключалась в согласовании обратимого во времени характера движения отдельных молекул с очевидной необратимостью макроскопических процессов. Термодинамическому равновесию системы, по Больцману, соответствует максимум вероятности данного состояния. Необратимость процессов связана со стремлением систем к наиболее вероятному состоянию. Большое значение имела доказанная им теорема о равномерном распределении средней кинетической энергии по степеням свободы.

Классическая статистическая механика была завершена в работах Дж. У. Гиббса (1902), создавшего метод расчёта функций распределения для любых систем (а не только газов) в состоянии термодинамического равновесия. Всеобщее признание статистическая механика получила в 20 в. после создания А. Эйнштейном и М. Смолуховским (1905–06) на основе молекулярно-кинетической теории количественной теории броуновского движения , подтвержденной в опытах Ж. Б. Перрена .

Во 2-й половине 19 в. длительный процесс изучения электромагнитных явлений был завершен Максвеллом. В своей основной работе "Трактат об электричестве и магнетизме" (1873) он установил уравнения для электромагнитного поля (носящие его имя), которые объясняли все известные в то время факты с единой точки зрения и позволяли предсказывать новые явления. Электромагнитную индукцию Максвелл интерпретировал как процесс порождения переменным магнитным полем вихревого электрического поля. Вслед за этим он предсказал обратный эффект – порождение магнитного поля переменным электрическим полем (см. Ток смещения). Важнейшим результатом теории Максвелла был вывод о конечности скорости распространения электромагнитных взаимодействий, равной скорости света. Экспериментальное обнаружение электромагнитных волн Г. Р. Герцем (1886–89) подтвердило справедливость этого вывода. Из теории Максвелла вытекало, что свет имеет электромагнитную природу. Тем самым оптика стала одним из разделов электродинамики. В самом конце 19 в. П. Н. Лебедев обнаружил на опыте и измерил давление света, предсказанное теорией Максвелла, а А. С. Попов впервые использовал электромагнитные волны для беспроволочной связи.

Опыт показывал, что сформулированный Галилеем принцип относительности, согласно которому механические явления протекают одинаково во всех инерциальных системах отсчёта , справедлив и для электромагнитных явлений. Поэтому уравнения Максвелла не должны изменять свою форму (должны быть инвариантными) при переходе от одной инерциальной системы отсчёта к другой. Однако оказалось, что это справедливо лишь в том случае, если преобразования координат и времени при таком переходе отличны от преобразований Галилея, справедливых в механике Ньютона. Лоренц нашёл эти преобразования (Лоренца преобразования), но не смог дать им правильную интерпретацию. Это было сделано Эйнштейном в его частной теории относительности.

Открытие частной теории относительности показало ограниченность механической картины мира. Попытки свести электромагнитные процессы к механическим процессам в гипотетической среде – эфире оказались несостоятельными. Стало ясно, что электромагнитное поле представляет собой особую форму материи, поведение которой не подчиняется законам механики.

В 1916 Эйнштейн построил общую теорию относительности – физическую теорию пространства, времени и тяготения. Эта теория ознаменовала новый этап в развитии теории тяготения.

На рубеже 19–20 вв., ещё до создания специальной теории относительности, было положено начало величайшей революции в области Ф., связанной с возникновением и развитием квантовой теории.

В конце 19 в. выяснилось, что распределение энергии теплового излучения по спектру, выведенное из закона классической статистической физики о равномерном распределении энергии по степеням свободы, противоречит опыту. Из теории следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и охлаждаться до абсолютного нуля, т. е. что тепловое равновесие между веществом и излучением невозможно. Однако повседневный опыт противоречил этому выводу. Выход был найден в 1900 М. Планком , показавшим, что результаты теории согласуются с опытом, если предположить, в противоречии с классической электродинамикой, что атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия каждого такого кванта прямо пропорциональна частоте, а коэффициент пропорциональности является квант действия h = 6,6×10 -27 эрг ×сек, получивший впоследствии название постоянной Планка.

В 1905 Эйнштейн расширил гипотезу Планка, предположив, что излучаемая порция электромагнитной энергии распространяется и поглощается также только целиком, т. с. ведёт себя подобно частице (позднее она была названа фотоном). На основе этой гипотезы Эйнштейн объяснил закономерности фотоэффекта , не укладывающиеся в рамки классической электродинамики.

Т. о., на новом качественном уровне была возрождена корпускулярная теория света. Свет ведёт себя подобно потоку частиц (корпускул); однако одновременно ему присущи и волновые свойства, которые проявляются, в частности, в дифракции и интерференции света. Следовательно, несовместимые с точки зрения классической Ф. волновые и корпускулярные свойства присущи свету в равной мере (дуализм света). "Квантование" излучения приводило к выводу, что энергия внутриатомных движений также может меняться только скачкообразно. Такой вывод был сделан Н.Бором в 1913.

В 1926 Шрёдингер, пытаясь получить дискретные значения энергии атома из уравнения волнового типа, сформулировал основное уравнение квантовой механики, названное его именем. В.Гейзенберг и Борн (1925) построили квантовую механику в др. математической форме – т. н. матричную механику.

Согласно принципу Паули, энергия всей совокупности свободных электронов металла даже при абсолютном нуле отлична от нуля. В невозбуждённом состоянии все уровни энергии, начиная с нулевого и кончая некоторым максимальным уровнем (уровнем Ферми), оказываются занятыми электронами. Эта картина позволила Зоммерфельду объяснить малость вклада электронов в теплоёмкость металлов: при нагревании возбуждаются только электроны вблизи уровня Ферми.

В работах Ф. Блоха , Х. А. Бете и Л. Неель Гинзбурга квантовой электродинамики. Первые попытки непосредственного исследования строения атомного ядра относятся к 1919, когда Резерфорд путём обстрела стабильных ядер азота a-частицами добился их искусственного превращения в ядра кислорода. Открытие нейтрона в 1932 Дж. Чедвиком привело к созданию современной протонно-нейтронной модели ядра (Д. Д. Иваненко , Гейзенберг). В 1934 супруги И. и Ф. Жолио-Кюри открыли искусственную радиоактивность.

Создание ускорителей заряженных частиц позволило изучать различные ядерные реакции. Важнейшим результатом этого этапа Ф. явилось открытие деления атомного ядра.

В 1939–45 была впервые освобождена ядерная энергия с помощью цепной реакции деления 235 U и создана атомная бомба. Заслуга использования управляемой ядерной реакции деления 235 U в мирных, промышленных целях принадлежит СССР. В 1954 в СССР была построена первая атомная электростанция (г. Обнинск). Позже рентабельные атомные электростанции были созданы во многих странах.

нейтрино и открыто много новых элементарных частиц, в том числе крайне нестабильные частицы – резонансы , среднее время жизни которых составляет всего 10 -22 –10 -24 сек. Обнаруженная универсальная взаимопревращаемость элементарных частиц указывала на то, что эти частицы не элементарны в абсолютном смысле этого слова, а имеют сложную внутреннюю структуру, которую ещё предстоит открыть. Теория элементарных частиц и их взаимодействий (сильных, электромагнитных и слабых) составляет предмет квантовой теории поля – теории, ещё далёкой от завершения.