Процесс фибринолиза проходит в три фазы. Фибринолиз


Термином "фибринолиз" обозначается процесс растворения кровяного сгустка. В процессе коагуляции фибринолиз предотвращает нарушение микроциркуляции в регионах организма вне зоны повреждения, после остановки кровотечения - реканализацию тромба и восстановление кровоснабжения в дистальных по отношению места образования тромба тканях. процесс разрушения (лизиса) тромба, связан с расщеплением фибрина и фибриногена системой ферментов, активным компонентами которых является плазмин. Плазмин гидролизует фибрин, фибриноген, факторы V, VII, XII, протромбин.

Плазмин в крови находится в неактивном состоянии в виде плазминогена и активируется тканевыми и кровяными активаторами. Тканевые активаторы плазминогена синтезируются эндотелием сосудов. Наибольшее значение среди них имеют тканевой активатор плазминогена (ТАП) и урокиназа, которая вырабатывается в почке юкстагиомерулярным аппаратом.

Внутренний путь активации делят на Хагеман-зависимый и Хагеман-независимый. Хагеман-зависимый осуществляется ф XIIа, ВМК и капликреина. Хагеман-независтмый протекает по механизму срочных реакций и осуществляется протеиназами плазмы. В плазме есть ингибиторы фибринолиза: a2 - антиплазмин, С1 и a1-протеазные ингибиторы, a2 - макроглобулин. Активаторами являются: специфический активатор из эндотелиальных клеток; активированный фактор ХII при взаимодействии с калликреином и высокомолекулярным кининогеном; урокиназа, вырабатываемая почкой; бактериальная стрептокиназа.

Нарушение процесса свертывания крови происходит при недостатке или отсутствии какого-либо фактора, участвующего в гомеостазе. Так, например, известно наследственное заболевание гемофилия, которое встречается только у мужчин и характеризуется частыми и длительным кровотечением. Это заболевание обусловлено дефицитом факторов VIII и IX, которые называются антигемофильными.

Свертывание крови может протекать под влиянием факторов, ускоряющих и замедляющих этот процесс.

Факторы, ускоряющие процесс свертывания крови:

Разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови);

Ионы кальция (участвуют во всех основных фазах свертывания крови);

Тромбин;

Витамин К (участвует в синтезе протромбина);

Тепло (свертывание крови является ферментативным процессом);

Адреналин.

В нормальных условиях кровь в сосудах всегда находится в жидком состоянии, хотя условия для образования внутрисосудистых тромбов существуют постоянно. Поддержание жидкого состояния крови обеспечивается механизмами саморегуляции благодаря существованию соответствующих функциональных систем. Главными звеньями поддержания жидкого состояния крови являются свертывающая и противосвертывающая системы. В настоящее время принято выделять две противосвертывающие системы - первую и вторую.

Первая противосвертывающая система (ППС) осуществляет нейтрализацию тромбина в циркулирующей крови при условии его медленного образования и в небольших количествах. Нейтрализация тромбина осуществляется антикоагулянтами, которые постоянно находятся в крови и поэтому ППС функционирует постоянно. К таким веществам относятся:

Фибрин, который адсорбирует часть тромбина;

Антитромбины препятствуют превращению протромбина в тромбин;

Гепарин блокирует фазу перехода протромбина в тромбин и фибриногена в фибрин, а также тормозит первую фазу свертывания крови;

Продукты лизиса (разрушения фибрина), которые обладают антитромбиновой активностью, тормозят образование протромбиназы;

Клетки ретикуло-эндотелиальной системы поглощают тромбин плазмы крови.

При быстром нарастании количества тромбина в крови ППС не может предотвратить образование внутрисосудистых тромбов. В этом случае в действие вступает вторая противосвертывающая система (ВПС), которая обеспечивает поддержание жидкого состояния крови в сосудax рефлекторно-гуморальным путем. Резкое повышение концентрации тромбина в циркулирующей крови приводит к раздражению сосудистых хеморецепторов. Импульсы от них поступают в гигантоклеточное ядро ретикулярной формации продолговатого мозга, а затем по эфферентным путям к ретикуло-эндотелиальной системе (печень, легкие и др.). В кровь выделяются в больших количествах гепарин и вещества, которые осуществляют и стимулируют фибринолиз (например, активаторы плазминогена).

Гепарин ингибирует первые три фазы свертывания крови, вступает в связь с веществами, которые принимают участие в свертывании крови. Образующиеся при этом комплексы с тромбином, фибриногеном, адреналином, серотонином, фактором X11I и др. обладают антикоагулянтной активностью и литическим действием на нестабилизированный фибрин.

Регуляция свертывания крови

Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нсрвнои системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций: высвобождение из сосудистой стенки тромбопластина, который быстро превращается в тканевую протромбиназу; адреналин активирует фактор XII, который является инициатором образования кровяной протромбиназы; адреналин активирует тканевые липазы, которые расщепляют жиры и тем самым увеличивается содержание жирных кислот в крови, обладающих тромбопластической активностью; адреналин усиливает высвобождение фосфолипидов из форменных элементов крови, особенно из эритроцитов.

Раздражение блуждающего нерва или введение ацетилхолина приводит к выделению из стенок сосудов веществ, аналогичных тем, которые выделяются при действии адреналина. Следовательно, в процессе эволюции в системе гемокоагуляции сформировалась лишь одна защитно-приспособительная реакция - гиперкоагулемия, направленная на срочную остановку кровотечения. Идентичность сдвигов гемокоагуляции при раздражении симпатического и парасимпатического отделов вегетативной нервной системы свидетельствует о том, что первичной гипокоагуляции не существует, она всегда вторична и развивается после первичной гиперкоагуляции как результат (следствие) расходования части факторов свертывания крови.

Ускорение гемокоауляции вызывает усиление фибринолиза, что обеспечивает расщепление избытка фибрина. Активация фибринолиза наблюдается при физической работе, эмоциях, болевом раздражении.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

Система свертывания крови входит в состав более обширной системы - системы регуляции агрегатного состояния крови и коллоидов (PACK), которая поддерживает постоянство внутренней среды организма и ее агрегатное состояние на таком уровне, который необходим для нормальной жизнедеятельности путем обеспечения поддержания жидкого состояния крови, восстановления свойств стенок сосудов, которые изменяются даже при нормальном их функционировании. Система свертывания крови в организме все время находится в активном состоянии, что обусловлено непрерывным выделением тромбопластина из естественно разрушающихся клеток. Гиперкоагуляция развивается в состояниях болевого и эмоционального стресса, протекающего с активацией симпатического отдела автономной нервной системы. Катехоламины способствуют освобождению из стенок тромбопластина. Адреналин непосредственно активирует фактор Хагемана, активирует тканевые липазы, что способствует повышению тромбопластической активности. Раздражение блуждающего нерва приводит к эффектам, аналогичным эффектам адреналина.



Внутрисосудистое превращение фибриногена в фибрин, в норме очень ограниченное, при шоке может значительно усиливаться. Фибринолиз - основной механизм, обеспечивающий в этих условиях поддержание жидкого состояния крови и проходимости сосудов, прежде всего - микроциркуляторного русЛа.

Фибринолитическая система включает в себя плазмин и его предшественник плазминоген, активаторы плазминогена и ингибиторы плазмина и активаторов (рис. 12.3). Фибринолитическая активность крови повышается при различных физиологических состояниях организма (физической нагрузке, психоэмоциональном напряжении и т. д.), что объясняется поступлением в кровь тканевых активаторов плазминогена (ТАП). В настоящее время можно считать установленным, что основным источником активатора плазминогена, обнаруживаемого в крови, являются клетки сосудистой стенки, главным образом эндотелий.

Несмотря на то что в экспериментах in vitro показано выделение ТАП из эндотелия, остается открытым вопрос, является ли такая секреция физиологическим феноменом или это просто следствие «утечки». В физиологических условиях, по-видимому, выделение ТАП из эндотелия очень мало. При окклюзии сосуда, стрессе этот процесс усиливается. В регуляции его играют роль биологически активные вещества: катехоламины, вазопрессин, гистамин; кинины усиливают, а ИЛ-1, ФНО и другие - уменьшают продукцию ТАП.

В эндотелии наряду с ТАП образуется и секретируется и его ингибитор - PAI-1 (plasminogen activator inhibitor-1). PAI-1 находится в клетках в большем количестве, чем ТАП. В крови

-ФХП
PAI-I- -
PAI-II -

альфа2 Макроглобулин------ *~Плазмин -

Фибриноген

(Д-фрагмент)

Рис. 12.3. Фибринолитическая система:

ТАП - тканевый активатор плазминогена; PAI-I - ингибитор ТАП; PAI-II - ингибитор урокиназы; а Гір С - активированный протеин С; ВМК - высокомолекулярный кининоген; ПДФ - продукты деградации фибрина (фибриногена); _ _ -

ингибирование;------------ - активация

и субклеточном матриксе PAI-1 связан с адгезивным гликопротеином - витронектином. В этом комплексе период биологического полураспада PAI-1 увеличивается в 2-4 раза. Благодаря этому возможна концентрация PAI-1 в определенном регионе и локальное угнетение фибринолиза. Некоторые цитокины (ИЛ-1, ФНО) и эндотелии подавляют фибринолитическую активность главным образом за счет увеличения синтеза и секреции PAI-1. При септическом шоке содержание PAI-1 в крови увеличено. Нарушение участия эндотелия в регуляции фибринолиза является важным звеном патогенеза шока. Обнаружение в крови большого количества ТАП еще не является свидетельством происходящего фибринолиза. Тканевый активатор плазминогена, как и сам плазминоген, имеет сильное сродство к фибрину. При выделении его в кровь не происходит генерации плазмина при отсутствии фибрина. Плазминоген и ТАП могут сосуществовать в крови, но не взаимодействовать. Активация плазминогена происходит на поверхности фибрина.

Активность ТАП, присутствующего в плазме человека, быстро исчезает как in vivo, так и in vitro. Период биологического полураспада ТАП, выделяющегося после введения здоровым людям никотиновой кислоты, составляет 13 мин in vivo и 78 мин in vitro. В элиминации ТАП из крови основную роль играет печень, при ее функциональной недостаточности наблюдается значительная задержка выведения. Инактивация ТАП в крови происходит также под влиянием физиологических ингибиторов.

Образование плазмина из плазминогена под влиянием тканевых активаторов рассматривается как внешний механизм акти-

вации плазминогена. Внутренний механизм связан с прямым или опосредованным действием ф. ХНа и калликреина (см. рис. 12.3) и демонстрирует тесную связь между процессами свертывания крови и фибринолиза.

Выявленное in vitro повышение фибринолитической активности крови не обязательно указывает на активацию фибринолиза в организме. Для первичного фибринолиза, развивающегося при массивном поступлении в кровь активатора плазминогена, характерны гиперплазминемия, гипофибриногенемия, появление продуктов распада фибриногена, уменьшение плазминогена, ингибиторов плазмина, уменьшение в крови ф. Y и ф. YIII. Маркерами активации фибринолиза являются пептиды, которые выявляются на ранней стадии действия плазмина на фибриноген. При вторичном фибринолизе, развивающемся на фоне гипокоагуляции, в крови снижено содержание плазминогена, плазмина, резко выражена гипофибриногенемия, обнаруживается большое количество продуктов деградации фибрина (ПДФ).

Изменение фибринолитической активности наблюдается при всех видах шока и имеет фазный характер: кратковременный период повышения фибринолитической активности и последующее ее снижение. В некоторых случаях, как правило при тяжелом шоке, на фоне ДВС развивается вторичный фибринолиз.

Наиболее выраженный первичный фибринолиз наблюдается при шоке от электротравмы, применяющемся с лечебной целью в психиатрической клинике и развивающемся в основном при прохождении тока через мозг. При этом резко уменьшается время лизиса эуглобулинов плазмы, что свидетельствует об активации фибринолиза. В это же время шок, возникающий при прохождении тока через грудную клетку, не сопровождается активацией фибринолиза. Показано, что эти различия объясняются не различным содержанием активатора плазминогена в мозге и сердце, а активацией фибринолиза, если электрошок сопровождается мышечными судорогами. Возможно, при этом происходит сдавление вен сокращенными мышцами и выделение активатора плазминогена из эндотелия (Tyminski W. et al., 1970).

В экспериментальных исследованиях показано, что при электрошоке активаторы плазминогена выделяются не только из эндотелия сосудов, но из сердца, коркового слоя почек и в меньшей степени легких, печени (Андреенко Г. В., Подорольская Л. В., 1987). В механизме выделения активатора плазминогена при электрошоке основное значение имеет нейро-гуморальная стимуляция. При травматическом шоке также нередко наблюдается первичный фибринолиз. Так, уже в ранние сроки после травмы (1-3 ч) у пострадавших отмечается повышение фибринолитической активности (Плешаков В.

Л., Цыбуляк Г. Н., 1971; Сувальская Л. А. и др., 1980). Определенную роль при этом может играть не только выделение сосудистого и тканевых активаторов плазминогена, но и активация ф. XII. Одним из механизмов активации фиб- ринолиза при травматическом шоке является снижение активности CI эстеразного ингибитора, который активирует ф. ХПа и калликреин. В результате увеличивается продолжительность циркуляции активаторов внутреннего фибринолиза. Степень активации фибринолиза может зависеть также от локализации травмы, так как содержание активатора плазминогена в различных тканях неодинаково.

Период биологического полураспада плазмина составляет около 0,1 с, он очень быстро инактивируется а2-антиплазмином, который образует с ферментом стабильный комплекс. Именно этим, по-видимому, можно объяснить, что в ряде случаев первичный фибринолиз в начальном периоде травматического шока не выявляется и более того наблюдается угнетение фибринолиза. Так, при травме органов брюшной полости (II--III стадии шока) на фоне гиперкоагуляции, наличия в крови растворимых комплексов фибрин-мономера фибринолитическая активность было снижена (Трушкина Т. В. и др., 1987). Возможно, это связано с резким увеличением продукции ингибиторов плазмина, как реакции на начальную кратковременную гиперплазминемию. Общая антиплаз- миновая активность увеличивается прежде всего за счет а2-анти- плазмина, а также ингибитора активатора плазминогена и гликопротеида, богатого гистидином. Такая реакция подробно описана I. A. Paramo и др. (1985) у больных в послеоперационном периоде.

После первичной активации фибринолиза при травме, осложненной шоком, развивается стадия снижения фибринолитической активности и/или вторичный фибринолиз. При стремительном развитии шока ДВС синдром и вторичный фибринолиз развиваются очень быстро (Дерябин И. И. и др., 1984).

В механизме угнетения фибринолиза при шоке имеет значение прежде всего увеличение общей антиплазминной активности (в основном а2-антиплазмина), а также гликопротеида, богатого гистидином, который вмешивается в связывание плазминогена с фибрином. На фоне уменьшения фибринолитической активности в системной циркуляции локальный фибринолиз в зоне повреждения, по-видимому, усилен. О этом свидетельствует количество ПДФ в крови после травмы.

Данные о фибринолитической активности крови при геморрагическом шоке весьма противоречивы, что объясняется различиями в объеме кровопотери, сопутствующими осложнениями и т. д. (Шутеу Ю. и др., 1981; Братусь В. Д., 1991). Экспериментальные данные также не внесли полной ясности в этот вопрос. Так, И. Б. Калмыкова (1979) наблюдала у собак после кровопотери (40-45 % ОЦК, АД = 40 мм рт. ст.) усиление фибринолиза на фоне гиперкоагуляции, а в фазе гипокоагуляции фибринолиз уменьшался. В аналогичных опытах в течение 3 часов после кровопотери Р. Garsia-Barreno и др. (1978) установили, что время лизиса эуглобулинов плазмы и концентрация фибриногена не изменялись, а через 6 ч наблюдалось некоторое угнетение фибринолиза.

Принципиально важным является то, что изменения фибринолиза при геморрагическом шоке вторичны, т. е. возникают на фоне циркуляторной гипоксии, метаболического ацидоза и т. д. При других видах шока активация фибринолиза может происходить независимо от гемодинамических нарушений (например, при электрошоке).

При септическом шоке фибринолитическая активность изменяется очень быстро и так же, как и при других видах шока, имеет фазный характер: усиление фибринолиза, угнетение, вторичный фибринолиз (развивается не во всех случаях). Р. Garcia-Bar- reno и др. (1978) проследили изменение фибринолитической активности крови у собак с эндотоксиновым шоком, начиная с 30-й мин и до 6 ч после выделения липополисахарида Escherichia coli. Фибринолитическая активность у подопытных животных резко возросла, концентрация фибриногена уменьшалась, а ПДФ через 1 ч обнаруживалась у 100 % животных. Следовательно, коагуло- патические изменения, в том числе и фибринолиз, развивались независимо от гемодинамических нарушений, гипоксии и т. д.

В механизме активизации фибринолиза при септическом шоке основное значение придается внутреннему пути активации плазминогена при участии ф. XII и калликреина (см. рис. 12.3). Первичный гиперфибринолиз при эндотоксиновом шоке развивается вследствие взаимодействия эндотоксина с сывороточной системой комплемента через активацию пропердиновой системы. Компонент СЗ и последние компоненты комплемента (С5-С9) активируют как фибринолиз, так и гемокоагуляцию.

Учитывая, что при септическом шоке происходит быстрое и сильное повреждение эндотелия, можно с уверенностью предположить участие внешнего механизма активации плазминогена. Наконец, при септическом шоке у больных выявлено снижение Cl-эстеразного ингибитора, являющегося ингибитором фибринолиза - инактивирует ф. ХПа и калликреин (Colucci М. et al.,

1985) . Вместе с тем под влиянием эндотоксина увеличивается образование быстродействующего ингибитора активатора плазминогена (Blauhut В. et al., 1985). Значение этого механизма регуляции еще предстоит изучить.

Если при травматическом, септическом, геморрагическом шоке и электрошоке большинство исследователей выделяют начальный период активации фибринолиза, то в ранней фазе кардиогенного шока фибринолитическая активность снижена, а в поздней повышена (Люсов В. А. и др., 1976; Грицюк В. И. и др., 1987). Вероятно, это объясняется тем, что острый инфаркт миокарда, осложненный кардиогенным шоком, развивается на фоне значительных изменений в системе гемостаза - гиперкоагуляции, напряжения фибринолитической системы и т. д. Это приводит к истощению запасов сосудистого активатора плазминогена, по- отому при кардиогенном шоке и не развивается первичный ги- перфибринолиз, несмотря на выраженную гиперадреналинемию. I более поздней стадии шока регистрируются гипофибриногене- лия, тромбоцитопения, уменьшение активности ф. И, Y, YII, положительные паракоагуляционные тесты, т. е. признаки внутрисосудистого свертывания крови, и на этом фоне развивается вторичный гиперфибринолиз.

Изменение фибринолитической активности при шоке не только демонстрирует нарушение функционального состояния системы гемостаза, но имеет и патогенетическое значение. Усиление фибринолиза в начальной стадии шока несомненно имеет положительное значение, так как растворение фибрина способствует сохранению суспензионной стабильности крови и микроциркуляции. С другой стороны, усиление фибринолиза на фоне дефицита прокоагулянтов нарушает коагуляционный механизм гемостаза. Продукты распада фибриногена и фибрина (ПДФ) обладают ан- титромбиновой, антиполимеразной активностью, тормозят адгезию и агрегацию тромбоцитов, что снижает эффективность тром- боцитарно-сосудистого гемостаза. Таким образом, патогенетическое значение усиления фибринолиза при шоке (особенно вторичного фибринолиза) заключается в том, что при этом повышается вероятность геморрагий.

Система фибринолиза - антипод системы свертывания крови. Она обеспечивает растворение фибриновых нитей, в результате чего в сосудах восстанавливается нормальный кровоток.

Она имеет строение, аналогичное системе свертывания крови:

  1. компоненты системы фибринолиза., находящиеся в периферической крови;
  2. органы, продуцирующие и утилизирующие компоненты системы фибринолиза;
  3. органы, разрушающие компоненты системы фибринолиза;
  4. механизмы регуляции.

Система фибринолиза в норме оказывает строго локальное действие, т. к. компоненты ее адсорбируются на фибриновых нитях под действием фибринолиза нити растворяются, в процессе гидролиза образуются вещества, растворимые в плазме - продукты деградации фибрина (ПДФ) - они выполняют функцию вторичных антикоагулянтов, а затем выводятся из организма.

Значение системы фибринолиза.

Растворяет нити фибрина, обеспечивая реканализацию сосудов.

Поддерживает кровь в жидком состоянии.

Компоненты системы фибринолиза

Компоненты системы фибринолиза:

  1. плазмин (фибринолизин);
  2. активаторы фибринолиза;
  3. ингибиторы фибринолиза.

Плазмин - вырабатывается в неактивном состоянии в виде плазминогена. По своей природе это белок глобулиной фракции, вырабатывается в печени. Много его в сосудистой стенке. В гранулоцитах, эндофилах, легких, матке, предстательной и щитовидной железах.

В активном состоиянии плазмин адсорбируется на фибриновых нитях и действует как протеолитический фермент. В больших количествах плазмин может мутировать и фибриноген, образуя продукты деградации фибрина и фибриногена (ПДФФ), которые тоже являются вторичными антикоагулянтами.

При повышении количества плазмина, уменьшается количество фибриногена, возникает гипо- или афибринолитическое кровотечение.

Активаторы фибринолиза - превращают плазминоген в плазмин. Делятся на плазменные и тканевые.

Плазменные активаторы включают 3 группы веществ: различные фосфатазы плазмы крови - они находятся в активном состоянии - это активные (прямые) активаторы (физиологические). Кроме того, трипсин: вырабатывается в поджелудочное железе, попадает в 12-перстную кишку, там всасывается в кровь. В норме трипсин находится в крови в виде следов. При поражении поджелудочной железы концентрация трипсина в крови резко возрастает. Он полностью расщепляет плазминоген, что приводит к резкому снижению фибринолитической активности.

Активность урокиназы - она вырабатывается в юкстагломерулярном аппарате почек. Встречается в моче, поэтому моча может обладать слабой фибринолитической активностью.

Активаторы бактериального происхождения - стрепто- и стафиллокиназы.

Непрямые активаторы - находятся в плазме в неактивном состоянии, для их активации нужны белки лизокиназы: тканевые мукокиназы - активируются при травме тканей; плазменные лизокиназы - самый важный XII фактор свертывания крови.

Тканевые активаторы - находятся в тканях.

Их особенности:

  1. тесно связаны с клеточной структурой и освобождаются лишь при повреждении ткани;
  2. всегда находятся в активном состоянии;
  3. сильное, но ограниченное действие.

Ингибиторы делятся на:

  1. ингибиторы, препятствующие превращению плазминогена в плазмин;
  2. препятствующие действию активного плазмина.

Сейчас существуют искусственные ингибиторы, которые используются для борьбы с кровотечениями: Е-аминокапроновая кислота, контрикал, трасилол.

Фазы ферментативного фибринолиза

Фазы ферментативного фибринолиза:

I фаза: активация неактивных активаторов. При травме ткани освобождаются тканевые лизокиназы, при контакте с поврежденными сосудами активируются плазменные лизокиназы (XII плазменный фактор), т. е. происходит активация активаторов.

II фаза: активация плазмиогена. Под действием активаторов от плазминогена отщепляется тормозная группа и он становится активным.

III фаза: плазмин расщепляет фибриновые нити до ПДФ. Если участвуют уже активные активаторы (прямые) - фибринолиз протекает в 2 фазы.

Понятие о ферментативном фибринолизе

Процесс неферментативного фибринолиза идет без плазмина. Действующее начало - комплекс гепарина С.

Данный процесс идет под контролем следующих веществ.

  1. тромбогенные белки - фибриногеном, XIII плазменным фактором, тромбином;
  2. макроэрги - АДФ поврежденных тромбоцитов;
  3. компоненты фибринолитической системы: плазмином, плазминогеном, активаторами и ингибиторами фибринолиза;
  4. гормонами: адреналином, инсулином, тироксином.

Суть: комплексы гепарина действуют на нестабильные фибриновые нити (фибрин S): после действия фибрино-стабилизирующего фактора комплексы гепарина (на фибрин J) не действуют. При этом виде фибринолиза не идет гидролиз фибриновых нитей, а идет информационное изменение молекулы (фибрин S из фибриллярной формы переходит в тобулярную).

Взаимосвязь системы свертывания крови и системы фибринолиза

В нормальных условиях взаимодействие системы свертывания крови и системы фибринолиза происходит таким образом: в сосудах постоянно идет микросвертывание, что вызвано постоянным разрушением старых тромбоцитов и выделением из них в кровь тромбоцитарных факторов. В результате образуется фибрин, который останавливается при образовании фибрина S, который тонкой пленкой выстилает стенки сосудов. Нормализуя движение крови и улучшая ее реалогические свойства.

Система фибринолиза регулирует толщину этой пленки, от которой зависит проницаемость сосудистой стенки. При активации свертывающей системы активируется и система фибринолиза.

Фибринолиз (Fibrinolysis) - процесс растворения сгустков крови, включая расщепление нерастворимого белка фибрина под действием фермента плазмина. Одновременно с ретракции начинается фибринолиз — расщепления фибрина.


Также фибринолиз способствует реканализации сосудов после прекращения кровотечения. Хагеман-зависимый фибринолиз происходит под влиянием фактора XIIа свертывания крови, калликреина, которые вызывают превращение плазминогена в плазмин. Хагеман-зависимый фибринолиз происходит наиболее быстро и носит срочный характер.

Усиление фибринолиза обусловлено повышением тонуса симпатической нервной системы и поступлением в кровь адреналина и норадреналина. Это вызывает активацию фактора Хагемана, что запускает внешний и внутренний механизмы продукции протромбиназы, а также стимулирует Хагеман-зависимый фибринолиз.

Фибринолиз - (от Фибрин и греч. lýsis – разложение, растворение) растворение внутрисосудистых тромбов и внесосудистых отложений фибрина под действием фермента Фибринолизина. Это преобразование уравновешивается непрерывным фибринолизом, который в норме препятствует образованию сгустка b неповрежденной сосуде. Важнейшим стимулятором внешнего механизма фибринолиза являются белковые активаторы плазминогена, которые синтезируются в стенке.

Высокая эффективность фибринолиза обусловлена тем, что при свертывании крови фибрин адсорбирует плазминоген. В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот.

Различают два вида фибринолиза – ферментативный и неферментативный. Ферментативный фибринолиз осуществляется при участии протеолитического фермента плазмина. По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена. Принцип: Метод основан на осаждении в кислой среде и при низкой температуре эуглобулиновой фракции, содержащей факторы свертывания и фибринолиза.

Эуглобулиновыи лизис можно значительно ускорить, добавив в систему активаторов фибринолиза (стрептокиназу, урокиназу и др.) или предварительно обработав плазму каолином. Свертывание крови – это цепной ферментативный процесс, в котором последовательно происходит активация факторов свертывания и образование их комплексов.

Смотреть что такое «ФИБРИНОЛИЗ» в других словарях:

В активации и действии XII фактора участвуют также высокомолекулярный кининоген (ф XV) и калликреин (ф XIV). Затем XII фактор активирует XI фактор, образуя с ним комплекс. Вторая фаза. Во время этой фазы под влиянием протромбиназы происходит переход протромбина в активный фермент тромбин. Под влиянием фибринстабилизирующего фактора XIII происходит образование нерастворимого фибрин-полимера (фибрин “I”, insoluble), устойчивого к фибринолизу.

Система гемостаза

Является важной защитной реакцией организма и предотвращает закупорку кровеносных сосудов сгустками фибрина. Внешний путь активации осуществляется при неотъемлемом участии тканевых активаторов, синтезирующихся преимущественно в эндотелии сосудов.

Внутренний механизм активации осуществляется благодаря плазменным активаторам и активаторами форменных элементов крови - лейко­цитов, тромбоцитов и эритроцитов. Внутренний механизм активации разделяют на Хагеман-зависимый и Хагеман-независимый.

Описание и интерпретация лабораторных показателей онлайн

Из эндотелия также происходит выделение тканевого активатора плазминогена и урокиназы, стимулирующих процесс фибринолиза. Полагают, что в крови постоянно происходят процессы превращения небольшого количества фибриногена в фибрин.

В процессе расщепления фибрина образуется протеолитический фермент плазмин. Поэтому он действует местно (в сгустков крови). Интенсивный выброс в кровь сосудистых активаторов бывает при нарушении проходимости сосудов, физической нагрузке под влиянием веществ, которые сужают сосуды.

Вследствие этого плазмин появляется непосредственно в сгустка крови, который начинает разрушаться сразу после образования. Сильные активаторы плазминогена содержатся во всех клетках крови, особенно в лейкоцитах.

Унифицированный метод определения фибринолитической активности методом лизиса эуглобулинов плазмы (по Е. Kowalski et al., 1959).

Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора. Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации. Время лизиса эуглобулинового сгустка - это время с момента образования тромба до момента его растворения в плазме крови. К осажденной фракции плазмы добавляют тромбин для образования сгустка.

Между процессами свертывания крови и фибринолизом в организме поддерживается равновесие. Этот механизм обеспечивает и трупный фибринолиз. Фибринолиз, как и процесс свертывания крови, протекает по внешнему или внутреннему механизму. Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы.

В этой статье мы ознакомимся с ответом на вопрос о том, что это - фибринолиз. Здесь мы постараемся изучить определение данного термина, его значение в жизни живых существ, фазы процесса и некоторые особенности. Также в статье будет уделено отдельное внимание вопросу о его норме в организме, в частности при беременности женщин.

Введение

Фибринолиз - это процесс, в ходе которого осуществляется растворение тромбов и/или сгустков крови. Он является неотъемлемой частью устройства механизма гомеостаза и всегда сопровождается свертыванием жидкости - крови. В данный процесс входит множество культивирующих факторов, которые его сопровождают.

Фибринолиз - это одна из важнейших защитных реакций организма, предотвращающая закупоривание фибрином сосудов, служащих магистралью для движения крови. Еще одна важная функция - реканализация, которую можно наблюдать после того, как кровотечение было прекращено. В фибринолиз включено расщепление фибрина, которое осуществляется посредством использования плазмина. Белок плазмина пребывает в крови, однако в неактивной форме, которую называют плазминогеном.

Внешняя активация

Фазы фибринолиза делятся в соответствии с формой активации, которую разделяют на внешнюю и внутреннюю.

Внешний механизм активации возможен лишь в том случае, если имеется набор тканевых активаторов. Как правило, последние синтезируются в сосудистом эндотелии. К таким типам молекул относят следующие вещества:

  • Урокиназа - человеческая сериновая протеаза, кодируемая PLAU-геном (10-хромосома).
  • ТАП - тканевый активатор плазминогенов.

Внутренняя активация

Осуществление внутренней активации происходит посредством применения плазменных активаторов и форменных кровяных элементов, таки как лейкоциты, эритроциты и тромбоциты. Внутреннюю систему активационного механизма делят на Хагеман-зависимую и независимую форму. Последний тип (независимый) осуществляется лишь при наличии протеинов С и S, которые оказывают на него прямое воздействие. Зависимый фибринолиз обуславливается влиянием Также необходимо присутствие калликреина, вызывающего трансформацию плазминогенов в плазмин. Главное предназначение Хагеман-зависимой формы заключается в очищении русла сосудов от фибрина в нестабильном виде.

Процесс ингибирования

Фибринолиз - это процесс, который вместе с рядом некоторых ингибирующих и активирующих веществ, обуславливают явление фибринолитической активности и определяют ее свойства посредством соотношения между собой.

Плазма крови включает в себя набор ингибиторов, замедляющих процесс фибринолиза. Одним из самых значимых ингибиторов, является альфа2-плазмин, связывающий плазмин, трипсин, калликреин, урокиназу и ТАП. Другими сильными ингибирующими веществами служат: С1-протеазный ингибитор и много других. Их могут вырабатывать не только плазма крови, но и фибробласты, макрофаги и моноциты.

Форма регуляции

Процессы свертывания и фибринолиза пребывают в постоянном равновесии между собой.

Явление усиления фибринолиза обуславливается изменениями в симпатической нервной системе (повышение тонуса) и увеличенным выделением таких гормонов, как адреналин и норадреналин. Три данных причины приводят к активации фактора Хагемана. Последний в свою очередь запускает как внутренний, так и наружный механизмы. Главными эфферентными регуляторами процессов фибринолиза и кровяного свертывания являются сосудистые стенки.

Показатели при беременности

Норма фибринолиза при беременности является очень важным моментом, на который будущей матери стоит обратить внимание. Это позволит избежать ненужных осложнений, которые могут проявиться у плода в случае, если его норма превышена или понижена.

Фибринолиз - это явление растворения тромбов и кровяных сгустков. Он напрямую влияет на формирование человеческого ребенка в утробе матери. После зачатия показатель фибриногена, связанного с явлением фибринолиза, может менять свое значение в организме от крайне малых до огромных величин. Чтобы четко определить его уровень, необходимо сделать клиническое исследование.

Роды сопровождаются большой кровопотерей и в случае отсутствия достаточного количества фибриногена, это может привести к утрате больших ресурсов крови. Процесс фибринолиза крайне важен для активности плаценты, как и содержание самого фибриногена. Оба фактора могут вызывать крайне нежелательные осложнения, например задержку в развитии плода.

На основе данных об уровне фибриногена и скорости протекания фибринолиза, доктора могут сделать выводы о наличии у матери выраженных воспалительных процессов, а также некротической тканевой конфигурации. Природа решила данную проблему при помощи увеличения уровня фибриногена в течение периода вынашивания ребенка.

Норма фибриногена

Нормой для женщин до начала беременности является показатель от двух до четырех грамм на литр. После того как плод был зачат, данная цифра возрастает до шести грамм. Этот показатель по-прежнему считается нормой. Существенное превышение фибриногена наблюдается на третьем триместре.

Несмотря на то, что увеличение показателя фибриногена при беременности является нормальной реакцией организма на формирование плода, его величина (фибриногена) все равно обладает собственным пределом, наличие которого может свидетельствовать о формировании патологических процессов. В таких случаях назначается обследование пациенты с применением гемостазиограммы.

Фибринолиз - что это значит? Ответив на данный вопрос, мы также затронули понятие фибриногена. Так к каким же последствиям может привести понижение фибриногена и изменение в процессе фибринолиза?

Вышеупомянутые изменения в организме матери могут привести к досрочной отслойке плацентарных тканей, образующих ее стенки, а также вызвать гипоксию и гипотрофию плода.

Низкое значение фибриногена может вызвать такие болезненные состояния:

  • гепатиты;
  • острая нехватка витаминов В2 и С;
  • гестоз;
  • внутрисосудистое диссеминированное свертывание.

Как правило, нехватка компонента крови фибриногена обуславливается явлением позднего токсикоза - гестоза.