Роль лимбической системы мозга в мотивациях.

Мозг располагает специальной системой поощрения, мотивирующей нас добывать необходимое для выживания, а именно пищу и воду. От употребления еды и воды мы получаем удовольствие, а следовательно мотивированы на повторение действий и поведения, приводящих нас к ним.

Внутренние потребности нашего тела определенным образом направляют наше поведение, ведут нас к тем или иным конкретным целям, восполняющим наши нужды. Голод мотивирует нас добывать еду, жажда - воду, холод - теплое место. Еда и питье необходимы для нашего выживания, и наши ощущения от них мы воспринимаем как удовлетворительные и приятные, и потому у нас возникает естественное желание повторять поведение, позволяющее вновь и вновь получать эти переживания. Сексуальное поведение и воспитание детей также доставляют удовольствие - они обеспечивают выживание вида.

Мотивационные состояния типа голода и жажды соответствуют физиологическим состояниям тела. Гипоталамус (вместе с «главной железой» - гипофизом) контролирует поведение, связанное с питанием, а также терморегуляцию, и координирует мозговую деятельность при помощи гормональной системы и системы поощрения мозга, состоящей из структур среднего мозга, лимбической системы и коры - с их участием каждому виду поощрения присваивается ценность и статус. По этой шкале измеряется то, на что мы готовы пойти ради получения того или иного поощрения: ради поощрения с высоким статусом мы выделяем большой ресурс, ради того, что статусом пониже, - поменьше. Наркотики, вызывающие привыкание, взламывают систему поощрения, а мотивацию подкашивают некоторые психические заболевания.

Добро пожаловать в центр удовольствия.
Главный компонент системы поощрений в мозге - нейронный путь, именуемый мезолимбическим. Он состоит из нейронов в среднем мозге, производящих нейромедиатор дофамин и простирающих свои аксоны к клеткам - с которыми образуют синапсы - в другой области среднего мозга под названием «покрышка». Нейроны вентральной области покрышки протягиваются до участка лимбической системы, именуемой прилежащим ядром.

Когда эти клетки активируются, выделяется дофамин, что приводит к переживанию удовольствия. Аксоны, отходящие от нейронов в прилежащем ядре, образуют медиальный переднемозговой пучок, проникающий в участок фронтальной доли под названием «орбитофронтальная кора». Именно в этой части мозга присваивается статус разным видам поощрения и здесь же переживается предвкушение поощрительного эффекта.

Все приятные переживания вызывают выброс дофамина нейронами среднего мозга в прилежащее ядро. Этот участок мозга часто называют «центром удовольствия». Занятие чем-нибудь приятным доставляет нам удовольствие и инициирует процесс обучения, закрепляющий нашу тягу к этой конкретной цели, и усиливает воспоминания о ситуациях, предвещающих получение этого опыта. Всё это укрепляет повадки, ведущие к получению поощрения, тем самым увеличивая вероятность повторения тех же действий в будущем, что для нашего выживания хорошо.

Пристрастия и болезни.
Иногда систему поощрения заклинивает. Наркотики, вызывающие привыкание, к примеру, взламывают систему поощрения мозга, и наркоман переоценивает нечто потенциально вредоносное и жертвует другими поощрениями, утоляющими физиологические и репродуктивные нужды. Подобно естественным поощрениям в виде пищи и секса, наркотики, вызывающие привыкание, производят приятный эффект, усиливая так или иначе выделение дофамина в прилежащее ядро, что приводит к эйфорическим переживаниям.

Кокаин предотвращает обратный захват дофамина прилежащим ядром, продлевая эффект, производимый этим нейромедиатором в синапсах пути поощрения. Амфетамины также повышают уровень дофамина в прилежащем ядре, стимулируя его выделение. А никотин - наркотик, вызывающий самое сильное привыкание, модулирует выделение дофамина косвенно. Он связывает ацетилхолиновые рецепторы в прилежащем ядре, усиливая выделение дофамина.

Длительное применение большинства наркотиков подавляет работу цикла поощрения в мозге и приводит к привыканию: потребляющему нужно все большее количество наркотика для достижения эйфорического эффекта. Поскольку антагонисты дофаминовых рецепторов, блокирующие действие дофамина путем конкурентного связывания с его рецепторами, могут уменьшить тягу к некоторым наркотикам, фармацевтические компании пытаются разработать такие вещества и применять их как лекарства от зависимости.

Научение играет значительную роль в развитии пристрастия. Одной дозы кокаина достаточно, чтобы развить у синапсов в вентральной области покрышки среднего мозга пластичность, тем самым закрепляя путь выделения дофамина в прилежащее ядро. В результате поощряющий эффект наркотика усиливается и провоцирует тягу, возникающую при абстиненции. Последовательность действий, связанных с получением наркотика, также подкрепляется, что приводит к навязчивому желанию добыть наркотик. Наркотическая зависимость, кроме того, связана с навыком ассоциировать прием наркотиков со специфическими раздражителями - предметной средой наркопотребления или определенными ситуациями, и соприкосновение с этими раздражителями реактивирует путь поощрения, что заставляет наркомана искать наркотик и увеличивает вероятность возвращения «завязавшего» к старой привычке.

Система поощрения в мозге и мотивационные состояния тела меняются и при некоторых психических расстройствах. Серьезная депрессия, например, характеризуется ангедонией - неспособностью получать удовольствие от деятельности, которая большинству людей приятна. Как следствие, пациентам в депрессии не хватает мотивации заниматься какой бы то ни было деятельностью. Система поощрения настроена иначе и у детей с синдромом дефицита внимания и гиперактивностью (СДВГ). Дети с этим расстройством, которое характеризуется невнимательностью, иногда сопровождающейся повышенной непоседливостью и импульсивностью, нуждаются в более масштабных поводах для изменения поведения, нежели остальные, им трудно откладывать поощрение, и они предпочитают немедленное маленькое удовольствие большому, но отсроченному.

Хотя в понимании механизмов, обусловливающих поощрение и мотивацию, мы порядком продвинулись, в этом очень многое еще предстоит понять. Ясно, что дофамин играет ключевую роль в этих процессах, и, судя по всему, важно разобраться, как люди научаются извлекать поощрение из пагубных вещей. Дальнейшие исследования в этой области могли бы помочь ученым разработать эффективные способы лечения зависимостей и различных психических расстройств, при которых система поощрения идет вразнос.

Практический психолог, зная механизмы возникновения эмоций, может помочь людям справиться с ними, предупредить развитие отрицательных эмоций, перебороть свой страх, клаустрофобию.

Эмоции - одно из проявлений субъективного отношения человека к окружающей действительности и к самому себе.

Радость, горе, страх, гнев, сострадание, блаженство, жалость, ревность, безразличие, любовь - нет конца словам, которые определяют различные виды и оттенки эмоций. С физиологической точки зрения, они представляют собой реакции организма на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чувствительности.

Однако они проявляются не только в субъективных переживаниях, о характере которых мы можем узнать только у человека, и, исходя из них, строить аналогии для высших животных, но и в объективно наблюдаемых внешних проявлениях, характерных действиях, мимике, вегетативных реакциях. Эти внешние проявления достаточно выразительны.

Состояние эмоционального напряжения сопровождается существенными изменениями функций ряда органов и систем, подобно пожару, охватывающему организм. Эти изменения функций бывают столь интенсивными, что представляются подлинной "вегетативной бурей". Однако в этой "буре" есть определённый порядок.

Эмоции вовлекают в усиленную деятельность лишь те органы и системы, которые обеспечивают лучше взаимодействие организма с окружающей средой.

Возникает резкое возбуждение симпатической части вегетативной нервной системы. При эмоциях изменяется субъективное состояние человека. В состоянии покоя мышление нередко бывает шаблонным, стереотипным. В моменты эмоционального подъёма приходит вдохновение, озаряют открытия, переживается радость творчества, а может быть и наоборот.

Эмоции - это состояние высшего подъёма духовных и физических сил человека только тогда, когда они положительные. А отрицательные эмоции ведут к упадку душевных и физических сил. Для возникновения положительных эмоций необходимо сочетание двух факторов: 1) неудовлетворённая потребность; 2) прирост вероятности удовлетворения потребности. Для возникновения отрицательных эмоций достаточно - семантического рассогласования между прогнозируемой ситуацией и афферентацией, поступившей из внешней среды.

Именно такое рассогласование наблюдается в случае, когда животное не находит в кормушке пищи, получает вместо ожидаемого мяса хлеб или даже удар электрического тока. Т.о. положительные эмоции требуют более сложного центрального аппарата по сравнению с положительным эмоциональным состоянием.

Положительные эмоции представляют аппарат активного нарушения гомеостаза. В форме ответных реакций организма, возникающих в чрезвычайных условиях, эмоции сформировались в процессе эволюции как механизм приспособления. Но чрезмерные по выраженности (положительные или отрицательные) эмоциональные реакции могут оказаться вредными, привести к возникновению ряда заболеваний. Врач должен уметь предупредить возможные последствия таких эмоциональных напряжений. Для этого необходимо знать условия запуска эмоций. С помощью механизмов эмоций "частный" сдвиг в организме, изменение одного из звеньев его жизнедеятельности превращается в "дело всего организма", перестраивает его текущую активность, мобилизует организм в целом на сохранение его индивидуального или видового существования.

Эмоции зависят от индивидуальных особенностей человека и, в первую очередь, от индивидуальных особенностей его мотивационной сферы, волевых качеств. Но необходимую эмоциональную реакцию нельзя вызвать прямым волевым усилием, как многократно подчёркивал К.С.Станиславский.

Американский психолог У.Джеймссоздатель одной из первых теорий, в которых субъективный эмоциональный опыт соотносится с физиологическими функциями, - описывал огромную роль эмоций в жизни человека следующими словами: "Представьте себе, если это возможно, что вы внезапно лишились всех эмоций, которыми наполняет вас окружающий мир, и попытайтесь вообразить этот мир таким, каков он сам по себе, без вашей благоприятной или неблагоприятной оценки, без внушаемых им надежд или опасений.

Такого рода отчуждённое и безжизненное представление будет для вас почти невозможным. Ведь в нём ни одна часть Вселенной не должна иметь большего значения, чем какая-либо другая, и вся совокупность вещей и событий не будет иметь смысла, характера, выражения или перспективы. Всё ценное, интересное и важное, что каждый из нас находит в своём мире, - всё это чистый продукт созерцающей личности". Физиологические основы эмоций.

Эмоции - это необходимый фундамент для повседневной и творческой жизни людей. Они вызываются действием на организм, на рецепторы и, следовательно, на мозговые концы анализаторов определённых раздражителей внешней среды, связанных с условиями существования.

Происходящие при эмоциях характерные физиологические процессы являются рефлексами головного мозга. Они вызываются лобными долями больших полушарий через вегетативные центры, лимбическую систему и ретикулярную формацию.

Возбуждение из этих центров распространяется по вегетативным нервам, которые непосредственно изменяют функции внутренних органов, вызывают поступление в кровь гормонов, медиаторов и метаболитов, воздействующих на вегетативную иннервацию органов.

Возбуждение передней группы ядер подбугровой области непосредственно за перекрёстом зрительных нервов вызывает характерные для эмоций парасимпатические реакции, а задней и боковой групп ядер - симпатические.

Следует учесть, что в одних системах организма при эмоциях преобладают симпатические влияния подбугровой области, например в сердечно - сосудистой, а в других - парасимпатические, например в пищеварительной.

Возбуждение подбугровой области вызывает не только вегетативные, но и двигательные реакции.

Вследствие преобладания в ней тонуса симпатических ядер она повышает возбудимость больших полушарий и тем самым влияет на мышление. При возбуждении симпатической нервной системы двигательная активность увеличивается, а при возбуждении парасимпатическойуменьшается. В результате возбуждения симпатической системы и усиления пластического тонуса может наступить оцепенение мускулатуры, реакция обмирания, застывание тела в определённой позе - каталепсия.

Структуры мозга, участвующие в эмоциях.

Прежде, чем говорить о том, как взаимодействуют и влияют на возникновение эмоций отдельные структуры мозга, нужно по отдельности рассмотреть каждую из них, их функцию и структуру.

Только в XX в. появились сведения о структурах мозга, ответственных за возникновение эмоций, и стали понятны физиологические процессы, являющиеся основой эмоциональных состояний.

Решающая роль в формировании эмоций принадлежит лимбической системе, ретикулярной формации, лобным и височным долям. 1) Лимбическая система (Л.с.). Л.с. включает несколько связанных друг с другом образований. К ней относятся поясная извилина, свод, перегородка, некоторые ядра передней области таламуса, а также расположенный ниже небольшой, но важный участок мозга - гипоталамус (Hpt), миндалина, гиппокамп. Три последних участка мозга являются самыми важными, на них-то мы и обратим внимание. Hpt. Hptэто высший центр регуляции внутренней среды организма. В нём есть нейроны, которые активируются или, напротив, снижают активность при изменениях уровня глюкозы в крови и ликворе, изменениях осмотического давления, уровня гормонов и т.д.

Другой способ оповещения Hpt-ом об изменениях внутренней среды представлен нервными афферентными путями, собирающими импульсацию от рецепторов внутренних органов.

Изменения параметров внутренней среды отражают ту или иную потребность, а Hpt, в соответствии с этим, формирует мотивационную доминанту.

Нейроны латерального Hpt взаимодействуют с некоторыми структурами лимбической системы, а через передние ядра таламуса влияют на ассоциативную теменную область коры и двигательную кору, инициируя тем самым замысел движений. При хирургическом повреждении определённых участков Hpt животные теряют чувства насыщения и голода, которые, как известно, тесно связаны с эмоциональным состоянием удовольствия и неудовольствия. В результате утраты этих чувств сытое животное безудержно поглощает пищу и может погибнуть от обжорства, а голодное животное отказывается от еды и тоже погибает. При раздражении верхних и передних отделов Hpt вызывает у крыс агрессивную реакцию и, однажды испытав её, они впоследствии всячески избегали её вызывать.

Видимо, в этом случае активируются структуры, имеющие отношение к формированию отрицательных эмоций. "Зоны удовольствия" совпадали с путями передачи возбуждения от дофаминэргических нейронов чёрной субстанции и адренэргических нейронов голубого пятна. Это значит, что синтез и секреция дофамина и норадреналина играет существенную роль в возникновении чувства удовольствия. В ядрах Hpt находится много различных рецепторов. Hpt обладает свойством воспринимать изменения внутренней среды, а также смещения константы крови, т.е. они обладают центральной рецепторной функцией. Вся совокупность имеющихся в настоящее время данных свидетельствуют о том, что Hpt является ключевой структурой для реализации наиболее древней подкрепляющей функции эмоций.

Миндалина (миндалевидное ядро). Это клеточное скопление величиной с орех.

Эксперименты над животными показывают, что миндалина ответственна за агрессивное поведение или реакцию страха.

Поражение миндалин у обезьян влияет на эмоциональное и социальное поведение и может привести к эмоциональным нарушениям, сходным с расстройствами, сопровождающими такое заболевание как шизофрения.

Удаление миндалин с височной корой было названо "синдромом КлювераБьюси". Последствия удаления: пропадает чувство страха, гиперфагия (ест всё подряд), гиперсексуальность, потеря животным способности адекватно оценивать результат совершённого действия и внутреннего эмоционального переживания.

Миндалина, как и Hpt, относятся к мотивационным структурам, но, в отличие от Hpt, миндалины руководствуются не столько внутренними событиями, сколько внешними стимулами.

Миндалины больше связаны с эмоциями, чем с первичными потребностями и схему поведения они определяют, "взвешивая" конкурирующие эмоции. "Помогают" выбрать правильное решение. При двустороннем удалении миндалин у обезьян наблюдается утрата способности к нормальному общению внутри стада, обнаруживается замкнутость, склонность к уединению. Перенёсший такую операцию вожак совершенно утрачивает свой ранг, потому что перестаёт отличать "хорошее" обезьянье поведение от "плохого". Миндалина играет решающую роль в осуществлении переключающей поведение функции эмоций, в выборе мотивации, которая соответствует не только той или иной потребности, но и внешним условиям её удовлетворения в данной ситуации и в данный момент.

Гиппокамп.

Гиппокамп находится по соседству с миндалиной. Роль его в создании эмоций всё ещё не очень ясна, но тесная связь с миндалиной позволяет предположить, что гиппокамп тоже участвует в этом процессе.

Повреждение гиппокампа приводит к нарушению памяти - к неспособности запоминать новую информацию.

Гиппокамп относится к информационным структурам, его роль заключается в извлечении следов памяти о прежнем опыте и оценивание конкуренции мотивов.

Мотивационное возбуждение гиппокампа осуществляет Hpt, часть сигналов поступает к нему от перегородки, а следы памяти извлекаются благодаря взаимодействию гиппокампа с ассоциативной корой.

Способность гиппокампа реагировать на сигналы маловероятных событий позволяет рассматривать его как ключевую структуру для реализации компенсаторной, замещающей недостаток информации функции эмоций.

Разрушение гиппокампа не влияет на эмоциональное поведение.

Анализ участия гиппокампа в формировании положительных и отрицательных эмоциональных состояний предложен экспериментами Л.А.Преображенской. Опыты наглядно показывают, что роль гиппокампа в генезе эмоционального напряжения сводится к оценке формальной новизны действующих на животное стимулов.

Перегородка, свод и поясная извилина.

Поясная извилина окружает гиппокамп и другие структуры лимбической системы. Она выполняет функцию высшего координатора различных систем, т.е. следит за тем, чтобы эти системы взаимодействовали, работали вместе. Около поясной извилины расположен сводсистема волокон, идущих в обоих направлениях; он повторяет изгиб поясной извилины и соединяет гиппокамп с различными структурами мозга, в том числе и с Hpt. Ещё одна структура перегородка - получает входные сигналы через свод от гиппокампа и посылает выходные сигналы в Hpt. " стимуляция перегородки может дать информацию об удовлетворении всех (а не отдельных) внутренних нужд организма, что, повидимому, необходимо для возникновения реакции удовольствия" (Т.Л.Леонтович). Совместная деятельность височной коры, поясной извилины, гиппокампа и Hpt имеет прямое отношение к эмоциональной сфере высших животных и человека.

Двустороннее удаление височной области у обезьян приводит к симптомам эмоциональной апатии.

Удаление у обезьян височных долей, совместно с гиппокампом и миндалиной, приводило к исчезновению чувства страха, агрессивности, затруднению в различении качества пищи и её пригодности для еды. Таким образом, целостность височных структур мозга необходима для сохранения нормального эмоционального статуса, связанного с агрессивнооборонительным поведением. 2) Ретикулярная формация (Р.ф.). Важную роль в эмоциях играет Р.ф. - структура внутри моста и ствола головного мозга.

Именно это образование в наибольшей мере способно явиться "генерализатором" той или иной "частной" потребности организма. Она оказывает широкое и разностороннее влияние на различные отделы ЦНС вплоть до коры больших полушарий головного мозга, а также на рецепторные аппараты (органы чувств). Она обладает высокой чувствительностью к адреналину и адренолитическим веществам, что лишний раз указывает на органическую связь между Р.Ф. и симпатической нервной системой. Она способна активировать различные области мозга и проводить к его специфическим зонам ту информацию, которая является новой, необычной или биологически значимой, т.е. действует как своего рода фильтр.

Волокна от нейронов ретикулярной системы идут в различные области коры больших полушарий, некоторые - через таламус.

Считается, что большинство этих нейронов являются "неспецифическими". Это означает, что нейроны Р.ф. могут реагировать на многие виды стимулов.

Некоторые участки Р.ф. обладают специфическими функциями. К таким структурам относятся голубое пятно и чёрная субстанция.

Голубое пятноплотное скопление нейронов, продуцирующих в области синаптических контактов (к таламусу, Hpt, коре больших полушарий, мозжечку, сп. мозгу) медиатор норадреналин (вырабатываемый также мозговым веществом надпочечников). Норадреналин запускает эмоциональную реакцию.

Возможно, норадреналин играет также роль в возникновении реакций, субъективно воспринимаемых как удовольствие.

Другой участок Р.ф.- чёрная субстанцияпредставляет собой скопление нейронов, выделяющих медиатордофамин.

Дофамин способствует возникновению некоторых приятных ощущений. Он участвует в создании эйфории. Р.Ф. играет важную роль в регуляции уровня работоспособности коры больших полушарий, в смене сна и бодрствования, в явлениях гипноза и невротических состояний. 3) Кора больших полушарий.

Эмоции являются одной из сторон отражательной, т.е. психической, деятельности.

Следовательно, они связаны с корой - высшим отделом головного мозга, но в значительной мереи с подкорковыми образованиями мозга, ведающими регуляцией сердца, дыхания, обмена веществ, сна и бодрствования. В настоящее время накоплено большое число экспериментальных и клинических данных о роли полушарий головного мозга в регуляции эмоций.

Области коры, играющие наибольшую роль в эмоциях, - это лобные доли, к которым идут прямые нейронные связи от таламуса. В создании эмоций участвуют и височные доли.

Лобные доли имеют непосредственное отношение к оценке вероятностных характеристик окружающей среды. При возникновении эмоций фронтальной коре принадлежит роль выявления высокозначимых сигналов и отсеивания второстепенных. Это позволяет направить поведение на достижение реальных целей, где удовлетворение потребности можно прогнозировать с высокой степенью вероятности. На основе сравнения всей информации фронтальная кора обеспечивает выбор определённой схемы поведения.

Благодаря передним отделам неокортекса поведение ориентируется на сигналы высоковероятных событий, в то время как реакции на сигналы с малой вероятностью их подкрепления подвергаются торможению.

Двустороннее повреждение лобной (фронтальной) коры у обезьян ведёт к нарушению прогнозирования, которое не восстанавливается на протяжении 2-3 лет.

Аналогичный дефект наблюдается у больных с патологией лобных долей, для которых характерно стереотипное повторение одних и тех же действий, утративших своё значение.

Ориентация на сигналы высоковероятных событий делает поведение адекватным и результативным.

Однако в особых условиях, в ситуациях со значительной степенью неопределённости при явном дефиците прагматической информации необходимо учитывать и возможность маловероятных событий. Для реакций на сигналы с нужной вероятностью их подкрепления важна сохранность гиппокампавторой "информационной" структуры мозга.

Лобные отделы новой коры имеют непосредственное отношение к оценке вероятностных характеристик окружающей среды.

Постепенно накапливаются данные, свидетельствующие о роли межполушарной ассиметрии в формировании эмоций. К настоящему времени информационная теория П.В. Симоноваэто единственная цельная система представлений о формировании эмоций, только она позволяет соединить поведенческие функции эмоций с необходимыми для этих функций структурами мозга.

Поражение лобных долей приводит к глубоким нарушениям в эмоциональной сфере человека.

Преимущественно развиваются 2 синдрома: эмоциональная тупость и растормаживание низших эмоций и влечений. При ранениях в области лобных долей мозга наблюдаются изменения в настроении - от эйфории до депрессии, утрата способности к планированию, апатия. Это обуславливается тем, что лимбическая система, как основной "резервуар" эмоций, тесно связана с разными зонами коры больших полушарий, особенно с височными (память), теменными (ориентировка в пространстве) и лобными долями мозга (прогнозирование, ассоциативное мышление, интеллект). Настало время рассмотреть их взаимодействие в образовании эмоций, их роль и значимость.

Нервные центры эмоций. Жизнь большинства людей направлена на то, чтобы уменьшить страдания и извлечь как можно больше наслаждения.

Наслаждение или страдание зависит от активности определённых структур мозга.

Американский физиолог Уолтер Кеннон в 30-х г.г. пришёл к выводу о том, поток возбуждения, возникающего при действии эмоциональных стимулов, в таламусе расщепляется на две части: к коре, что обусловливает субъективное проявление эмоций (ощущение страха или уверенности), и к Hpt, что сопровождается характерными для эмоций вегетативными сдвигами. Позже эти представления были уточнены и детализированы в связи с обнаружением роли лимбической системы в формировании эмоций. В центре этой системы находится Hpt , которому принадлежит ключевая позиция, а снаружи с лимбической системой взаимодействуют лобные и височные области коры.

Ретикулярная формация ствола мозга поддерживает необходимый для функционирования уровень активности лимбической системы. О роли отдельных структур мозга можно судить по результатам их стимуляции через вживлённые в ткань мозга электроды.

Благодаря этому методу были выявлены чрезвычайно малые области Hpt, раздражение которых приводило к появлению пищевого или оборонительного поведения, сопровождавшегося характерными вегетативными реакциями. Такие структуры можно определить как мотивационные.

Наиболее обычным для них медиатором является норадреналин. При использовании этого метода были обнаружены области мозга, раздражение которых сопровождалось появлением положительных и отрицательных эмоций.

Положительные эмоции были получены при стимуляции ядер перегородки (эйфория), лимбических структур среднего мозга, передних ядер таламуса.

Основным претендентом на роль медиатора эмоциогеннопозитивных структур является дофамин и эндорфины.

Повышение образования эндорфинов приводит к улучшению настроения, снятию эмоционального напряжения, уменьшению или устранению болевых ощущений.

Отрицательные эмоции были получены при раздражении миндалин и некоторых областей Hpt. Медиатором для этих структур является серотонин.

Помимо мотивационных и эмоциогенных существуют информационные структуры. К ним принадлежит гиппокамп, при раздражении которого отмечается спутанность сознания, временная потеря контакта с врачом. По типу медиатора такие структуры чаще всего оказываются холинэргическими.

Эмоции "запускаются" мозгом, но реализуются с участием ВНС. Показателями эмоциональных реакций являются изменения кровяного давления, частоты сердечных сокращений и дыхания, температуры, ширины зрачков, секреции слюны и т.д. При этом симпатический отдел мобилизует энергию и ресурсы тела. Как известно, эмоции возникают не сами по себе, а всё начинается с потребности организма.

Потребности организма прежде всего воспринимаются хеморецепторами кровеносного русла и специальными центральными хеморецепторами, которые представлены в ЦНС. Также особенно богаты ими некоторые области ретикулярной формации ствола головного мозга и Hpt. Раздражённые участки возбуждаются.

Возбуждение адресуется в лимбические образования головного мозга.

Последние объединяют такие морфологические образования, как перегородку, миндалину, гиппокамп, поясную извилину, свод головного мозга и мамиллярные тела. Выход гипоталамических возбуждений на эти структуры головного мозга осуществляется через медиальный пучок переднего мозга.

Анализ функций передних отделов новой коры, гиппокампа, миндалины и Hpt свидетельствует о том, что взаимодействие этих структур мозга необходимо для организации поведения. При усилении гипоталамического возбуждения последнее через передние ядра таламуса начинает распространяться и на передние отделы коры больших полушарий.

Заключение. В этой работе мы рассмотрели взаимодействие отдельных структур мозга и их влияние на возникновение эмоций, и сделали вывод, что отдельно взятая структура мозга не сможет вызвать эмоцию, т.е. в одиночку никакая ничего не сможет сделать. Это как пальцы на руке. Один мало, что сможет сделать, а вместе они - сила. Самые ценные сведения о механизмах возникновения эмоций содержат теории. В них заключены самые основы формирования эмоциональных состояний. В чём-то теории похожи, в чём-то нет, одна продолжает развивать мысль другой, другая опровергает.

Например, по мнению Джеймса и Ланге, внешний раздражитель вызывает реакциюкомплекс эффекторных сдвигов в мышцах и внутренних органах, а нервные импульсы от этих органов вторично порождают эмоциональное состояние.

Кеннон опровергает эту теорию и выдвигает свою о том, что возникновение эмоционального состояния связано с вовлечением нервных центров зрительного бугра.

Специфическое качество эмоции добавляется, по мнению Кеннона, к простому ощущению, когда возбуждаются таламические процессы.

Исследуя структуры мозга, мы выяснили, что: 1. Hptроль важнейшей мотивационной структуры в особенности, если связана с биологическими потребностями (доминирующая потребность). Он играет большую роль в формировании подкрепляющей функции. 2. Миндалевидный мозг играет важную роль, но не первичную - субдоминант. 3. Миндалина обеспечивает переключающую функцию. 4. Фронтальная и височная области коры обеспечивают отражательнооценочную функцию, но отдельно взятая фронтальная кора формирует эмоциональное поведение. 5. Фронтальный неокортекс особенно важен для выделения высоковероятных прогнозов, действий, событий. 6. Гиппокампинформационная структура (если речь идёт о маловероятных событиях). Играет роль в формировании компенсаторной (замещающей) функции.

Эмоция есть отражение мозгом силы потребности и вероятности её удовлетворения в данный момент.

Эмоции идеальны потому, что на базе ранее накопленного опыта они отражают вероятности эффективности действий до того, как сами действия начнут реализоваться.

Эмоции всегда несут на себе отпечаток субъективности. Под влиянием отрицательной эмоции система будет стремиться к скорейшему удовлетворению обусловившей данную эмоцию потребности, к ликвидации этой потребности.

Особенности человеческих эмоций определяются прежде всего спецификой главных потребностей человека.

Литература. 1. Павлов И.П. Журнал высшей нервной деятельности// М: Наука, том 47, выпуск 2, 1997г. 2. Физиология человека.

Журнал// МАИК: Наука, том 24, номер 2, 1998г. 3. Мед.

Вестник: Лекции по физиологии ЦНС// №6`96г. (37) 4. Данилова Н.Н., Крылова А.Л. Физиология ВНД// М: Учебная литература, 1997г. 5. Физиология человека и животных //под ред. А.Б.Когана, М: Высшая школа, том 2, 1984г. 6. Физиология человека// под ред. Г.И. Косицкого. М: Медицина,1985г. 7 . Судаков К.В. Биологические мотивации// М: Медицина, 1971г. 8. Гальперин С.И. Физиология человека и животных// М, 1970г. 9. Симонов П.В. Теория отражения и психофизиология эмоций// М: Наука, 1970 10. Симонов П.В. ВНД человека.

Мотивации представляют собой непосредственное побуждение к действию, т.е. внутреннее состояние, стимулирующее и объясняющее различные поведенческие реакции. К. В. Судаков определил мотивации, как "эмоционально окрашенные состояния животных и человека, формирующие поведение, направленное на удовлетворение лежащих в их основе биологических и социальных потребностей" (Нормальная физиология / Под ред. К. В. Судакова. – М.: Медицинское информационное агентство, 1999). В "Словаре физиологических терминов" (М.: Наука, 1987) приводится определение П. В. Симонова: "Мотивация – физиологический механизм активирования хранящихся в памяти следов (энграмм) тех внешних объектов, которые способны удовлетворить имеющуюся у организма потребность, и тех действий, которые способны привести к её удовлетворению". Можно выделить три важных функции мотивации. Во-первых, мотивация направляет поведение к определённой цели – удовлетворению потребности. Во-вторых, она повышает общий уровень бодрствования, стимулирует человека или животное к активным действиям. И, в-третьих, она согласует между собой отдельные компоненты поведения и определяет их необходимую последовательность. Мотивации формируются на основе врождённых физиологических механизмов и приобретённого жизненного опыта. Уже новорождённый способен криком или плачем показывать, что он хочет есть, и успокаивается, после того, как его накормят. Питьевой, оборонительные и терморегуляционные рефлексы тоже являются врождёнными, генетически запрограммированными и вместе с пищевыми безусловными рефлексами они позволяют новорождённому удовлетворять важнейшие биологические потребности организма – в противном случае его ожидала бы гибель. Но, если биологические потребности новорождённого помогает удовлетворять мать или другие, заботящиеся о нём люди, то взрослые должны все проблемы решать сами. Путь от младенца до взрослого – это и процесс прибавления новых разнообразных механизмов управления. Они развиваются на основе существующих нервных и эндокринных способов регуляции, гетерохронного, т.е. неодновременного созревания и совершенствования различных структур мозга, отдельных синапсов и медиаторных систем; они связаны с формированием памяти о прежнем опыте успешных или, напротив, безуспешных действий, направленных на удовлетворение потребностей. Мотивированное поведение нельзя объяснить на основе только рефлекторных механизмов ответа на лишение, например, пищи или воды, на действие чрезмерного тепла или холода. Рефлексы связаны с непосредственным действием конкретного стимула, а мотивация представляет собой комплексную форму поведения, которая одновременно зависит как от внутренних или эндогенных причин, так и от внешних обстоятельств. Кроме того, надо учитывать, что в формировании мотиваций участвуют, наряду с нервными, и эндокринные механизмы управления поведением.



Внешняя среда и организм. Любой организм одноклеточный или многоклеточный живет во внешней среде, воздушной или водной, и отделен от нее тонким покровом. Понятие «внешняя среда» означает все, что окружает организм воздух, воду, пищу, свет и многое другое. Условия внешней среды изменчивы, они зависят от времени года и суток, солнечной активности, климатических и метеорологических факторов, от взаимоотношения с другими животными и от многих других факторов. Для домашних животных среда во многом формируется благодаря деятельности человека, который создает для животного определенные условия кормления и содержания.

Внутренняя среда и гомеостаз. Итак, все, что окружает животное это внешняя среда. В середине ХIХ века знаменитый французский физиолог Клод Бернар впервые сформулировал понятие о внутренней среде организма. Суть его концепции состояла в том, что клетки тканей и органов не соприкасаются с внешней средой и находятся в особой среде, включающей в себя циркулирующие в организме жидкости кровь, тканевую жидкость и лимфу. Строго говоря, под внутр означает все, что окружает организм воздух, воду, пищу, свет и многое другое. Условия внешней среды изменчивы, они зависят от времени года и суток, солнечной активности, климатических и метеорологических факторов, от взаимоотношения с другими животными и от многих других факторов. Для домашних животных среда во многом формируется благодаря деятельности человека, который создает для животного определенные условия кормления и содержания.

Организм является открытой системой, то есть он должен получать из внешней среды все необходимое для жизни и также постоянно выделять во внешнюю среду продукты своей жизнедеятельности. Прекращение обмена с внешней средой неминуемо приводит к смерти. Поэтому одной из основных функций организма, то есть проявлением жизнедеятельности, является обмен веществ и энергии. Эта функция включает в себя два взаимопроникающих процесса ассимиляцию и диссимиляцию.

Ассимиляция это усвоение поступающих в организм веществ, синтез из них новых сложных органических веществ, свойственных данному индивидууму, образование живой массы. Одновременно запасается энергия, необходимая организму для его жизненных проявлений.

Диссимиляция это процессы разрушения живой материи и выделение освободившейся при этом энергии.

Процессы ассимиляции и диссимиляции могут быть уравновешенными, или сбалансированными, но в некоторые периоды жизни один из них может преобладать над другим. Так, в период роста организма, или во время беременности процессы ассимиляции преобладают над процессами диссимиляции, происходит накопление веществ и массы тела, а в старом организме преобладают процессы диссимиляции, распада.

С обменом веществ связаны и другие функции организма. Раздражимость (возбудимость) способность организма отвечать на различные изменения внешней среды или состояния собственных органов и тканей. Ответ на раздражение позволяет либо предупредить нежелательные воздействия, отстраниться от них, либо изменить какието свои процессы адекватно воздействиям. Если нежелательные процессы уже возникли, то благодаря регуляторным механизмам они могут быть преодолены или компенсированы.

Размножение свойство самовоспроизведения, то есть рождение потомства, сходного в основных чертах с родителями одна из основных функций организма, отличающая его от неживой природы и направленная на сохранение вида, популяции.

Рост, развитие, старение процессы постепенного становления взрослого организма, совершенствование его строения и регуляторных возможностей, а затем постепенного снижения активности всех функций, приводящее к естественной смерти.

Реализация жизненных функций организма осуществляется системами органов пищеварения, кровообращения, дыхания, выделения, движения, размножения.

Внутренняя среда и гомеостаз. Итак, все, что окружает животное это внешняя среда. В середине ХIХ века знаменитый французский физиолог Клод Бернар впервые сформулировал понятие о внутренней среде организма. Суть его концепции состояла в том, что клетки тканей и органов не соприкасаются с внешней средой и находятся в особой среде, включающей в себя циркулирующие в организме жидкости кровь, тканевую жидкость и лимфу. Строго говоря, под внутренней средой следует понимать только тканевую, или интерстициальную жидкость, так как клетки тканей соприкасаются только с ней. Но тканевая жидкость образуется из крови и оттекает от органов через кровеносные и лимфатические сосуды. Поэтому в более широком плане к внутренней среде относят все три жидкости кровь, тканевую жидкость и лимфу. В капиллярной части сосудистого русла происходит фильтрация, или выпотевание жидкой части крови плазмы через стенки сосудов. Форменные элементы крови, а также макромолекулы (белки) не могут пройти через стенки сосудов и остаются в крови. Фильтрат крови, вышедший за пределы кровеносных капилляров, называется тканевой, или интерстициальной жидкостью.

Тканевая жидкость окружает клетки тканей и является для них как бы внешней средой. Из тканевой жидкости клетки поглощают все, что им необходимо кислород, питательные и минеральные вещества, витамины, гормоны, и выделяют в нее продукты своей жизнедеятельности. Обмен веществ осуществляется между клеткой и тканевой жидкостью через клеточные мембраны.

В результате жизнедеятельности клеток состав тканевой жидкости изменяется: в ней уменьшается содержание кислорода и питательных веществ, увеличивается количество продуктов обмена и появляются новые сложные вещества, синтезированные в клетках (белки, липиды, гормоны и др.).

Отток тканевой жидкости осуществляется двумя путями. Часть тканевой жидкости всасывается обратно в кровеносные сосуды, а другая часть в лимфатические капилляры. Та тканевая жидкость, которая всасывается в лимфатические сосуды, называется лимфой. Лимфа, образующаяся из тканевой жидкости, непрерывно движется по лимфатическим сосудам и затем поступает в переднюю полую вену, где и смешивается с венозной кровью.

Клод Бернар пришел также к мысли о том, что клетки и ткани организма могут нормально существовать только в строго определенных условиях. Те изменения внешней среды, которые человек и животные переносят довольно легко, губительны для отдельно взятых клеток, тканей или органов.

Так, в нашей средней полосе России перепады летней и зимней температуры воздуха более 60 °С, но жизнь продолжается и в знойной пустыне (+60°С) градусов, и в Антарктиде (80°С). Однако клетки выдерживают температурные колебания только в пределах нескольких градусов. Температура крови, например, имеет суточные колебания около одного градуса, и только при заболеваниях может отклоняться от нормы на 45 градусов.

Другой пример. Если животное в течение 2 3 суток не получает корм, то состав его крови мало отличается от крови сытого животного, несмотря на то, что из внешней среды питательные вещества не поступают. Значит, имеются какието механизмы, сглаживающие влияния внральная регуляция (humor жидкость) осуществляется за счет биологически активных веществ, которые образуются в организме и оказывают влияние через кровь на другие ткани и органы.

Какие вещества могут участвовать в регуляции функций и являются гуморальными агентами?

1. Электролиты. Ионы натрия, калия, кальция, магния, хлора ответственны за возникновение и проведение электрических импульсов в биологических мембранах (биотоки). Растворенные в крови минеральные соли создают осмотическое давление, определяют кислотнощелочные свойства крови, от величины которых зависят многие процессы в организме.

2. Конечные и промежуточные продукты обмена веществ углекислый газ, глюкоза, мочевина и др. Так, например, углекислый газ является важнейшим стимулятором дыхательного центра, а от уровня глюкозы в крови зависит деятельность многих желез внутренней секреции и других органов.

3. Гормоны биологически активные вещества, образующиеся во многих эндокринных железах и клетках.

4. Нервные медиаторы вещества, образующиеся в нервных окончаниях и передающие возбуждение с нерва на мышцу или железу.

5. Цитомедины вещества, образующиеся в различных клетках и несущие информацию для других клеток.

Гуморальная регуляция более древний способ регуляции, она имеется у растений, одноклеточных и многоклеточных животных. У высших животных гуморальная регуляция не утратила своего значения.

В процессе эволюции в связи с усложнением строения организмов гуморальной регуляции оказалось недостаточно для быстрых изменений жизненных реакций, их корреляции и взаимодействия в условиях меняющейся окружающей среды. На определенном этапе развития появилась нервная система, которая обеспечила быструю и направленную передачу сигналов в виде нервных импульсов (биотоков) к определенным органам адресатам, в то время как гуморальная регуляция неспецифична, так как гуморальные раздражители, циркулируя в крови, оказывают воздействие на любые чувствительные к ним ткани (инсулин, например гормон поджелудочной железы участвует в 22 реакциях, а адреналин гормон надпочечников влияет почти на все функции организма).

Нервная система состоит из центрального и периферического отделов. Центральная нервная система это головной и спинной мозг, где расположены нервные клетки (нейроны), объединенные в нервные центры. Периферическая нервная система это отростки нейронов, формирующие нервы и пронизывающие все тело животного.

По функциям нервная система подразделяется на соматическую и вегетативную.

Соматическая нервная система иннервирует поперечнополосатые мышцы и обеспечивает движение животного, поэтому называется также анимальной («животной»), или двигательной нервной системой.

Вегетативная нервная система иннервирует внутренние органы и регулирует системы органов пищеварения, кровообращения, дыхания, выделения, размножения и обмен веществ. Эти функции имеются и у растений, а слово «вегетативный» означает «растительный».

Как соматическая, так и вегетативная нервная система имеют нервные центры в головном и спинном мозге, и периферические нервы, через которые осуществляется двусторонняя связь нервной системы с органами.

Основной формой деятельности нервной системы является рефлекс. Рефлекс это ответная реакция организма на раздражение из внешней или внутренней среды при участии нервной системы. Примерами могут служить отдергивание руки от горячего предмета (двигательный рефлекс) или выделение желчи из желчного пузыря (вегетативный рефлекс).

Любой рефлекс осуществляется при участии определенных морфологических структур, которые составляют рефлекторную дугу. Рефлекторная дуга это путь, по которому проходит возбуждение от места раздражения через центральную нервную систему к исполнительному органу.

Рефлекторная дуга состоит из следующих звеньев.

1. Рецепторы чувствительные нервные окончания, воспринимающие раздражения. Под воздействием раздражителя в рецепторах возникает потенциал действия (биоток).

2. Центростремительный, или афферентный нерв, по которому возбуждение (потенциал действия) передается в центральную нервную систему.

3. Нервный центр совокупность нейронов, перерабатывающих полученную от рецепторов информацию и подготавливающих команду для исполнительных органов.

4. Центробежный, или эфферентный нерв, по которому нервный импульс передается исполнительным органам.

5. Эффектор, или исполнительный орган.

Единство нервной и гуморальной регуляции

В организме высших животных и человека в результате длительной эволюции сложилась единая нейрогуморальная система регуляции функций. Деление этой системы на нервную и гуморальную условное, оно необходимо для анализа сложнейших процессов, управляющих живым организмом.

Ведущую роль в регуляторных реакциях играет нервная система и ее высший отдел кора больших полушарий головного мозга. От многочисленных рецепторов, находящихся во всех органах и тканях сюда поступает, как в главный диспетчерский центр, информация о состоянии внешней среды и внутренней среды организма, обо всех изменениях в работе органов и систем, об изменениях в составе крови и тканевой жидкости.

Однако, гуморальные агенты играют роль не только раздражителей, они могут включаться в рефлекторные дуги как самостоятельные звенья. Такое место, например, занимают гормоны. Допустим, в крови животного увеличился уровень глюкозы. Это вызывает возбуждение рецепторов сосудов (хеморецепторов), информация поступает в гипоталамус отдел промежуточного мозга, и в кору больших полушарий. После оценки ситуации из гипоталамуса возбуждение передается в островковый аппарат поджелудочной железы, где вырабатывается гормон инсулин. Инсулин выделяется в кровь, действует на клеточные мембраны и снижает содержание глюкозы в крови до обычного уровня. Таким образом, гормон включился в эфферентную часть рефлекторной дуги.

Однако единство нервной и гуморальной регуляции этим не ограничивается. Известно, что нервные клетки (нейроны) обладают двумя функциями: способностью генерировать биотоки и передавать их на другие клетки, и способностью вырабатывать биологически активные вещества.

О том, что в нервных окончаниях выделяются химические вещества медиаторы было известно еще в 20х годах XX века. Медиаторы являются химическими посредниками между эфферентными нервами и органами. Никогда нервные окончания не проникают внутрь другой клетки. Они заканчиваются на небольшом расстоянии от мембраны иннервируемой клетки. Место контакта нервного окончания с другой клеткой нервной, мышечной или секреторной называется синапсом.

Синапс состоит из трех элементов: пресинаптической мембраны (часть нервного окончания), постсинаптической мембраны (часть мембраны другой клетки) и синаптической щели (пространство между пре и постсинаптической мембранами). Передача возбуждения с нерва на орган (клетку) заключается в том, что под влиянием нервного импульса из пресинаптической мембраны выделяется медиатор, который является химическим раздражителем для постсинаптической мембраны. В результате в ней возникает возбуждение, распространяющееся по всей клетке.

Самыми распространенными медиаторами являются ацетилхолин, норадреналин, адреналин и др.

Помимо медиаторов, нейроны головного мозга вырабатывают гормоны нейропептиды. Таковы, например, гормоны гипоталамуса. Их называют релизингфакторами. Эти гормоны стимулируют или угнетают образование гормонов в передней доле гипофиза, которые, в свою очередь, регулируют деятельность других желез внутренней секреции. Некоторые гормоны гипоталамуса поступают в заднюю долю гипофиза уже в «готовом виде», а затем уже из гипофиза поступают в кровь.

Таким образом, единство нервной и гуморальной регуляции осуществляется на уровне не только нервных окончаний, но и на более высоком уровне гипоталамогипофизарной системы.

Итак, регуляция всех жизненных процессов осуществляется единой нейрогуморальной системой, в которой ведущее значение играет центральная нервная система и ее высший отдел кора больших полушарий.

На более простых уровнях организации живой материи молекулярном, внутриклеточном, тканевом большую роль играет химическая регуляция. Чем сложнее биологическая система, тем большее значение приобретает нервная регуляция, которая объединяет органы и ткани в различные системы и осуществляет функционирование организма во внешней среде как единого целого.

Основные принципы регуляции физиологических функций

При изменении состояния организма, отличающегося от нормы, или приближающегося к предельным границам гомеостаза, развивается деятельность, возвращающая организм в обычный режим. Такой механизм называется отрицательной обратной связью. Например, при колебаниях уровня глюкозы в крови выше или ниже нормы изменяется работа почек, кишечника, желез внутренней секреции, что приводит к сглаживанию этих колебаний и сохранению постоянного содержания глюкозы в крови.

По принципу отрицательной обратной связи регулируется температура тела, артериальное давление, секреция многих эндокринных желез и другие функции организма.

Наряду с отрицательной обратной связью возможна и положительная. В этом случае процесс, уже начавшийся в организме, сам себя усиливает. Так, после приема пищи начинается выделение желчи в просвет кишечника. В составе желчи имеются желчные кислоты. Они синтезируются только в печени, и больше нигде. Попав в кишечник, желчные кислоты объединяются с жирными кислотами, всасываются в кровь и освобождаются от них. Но, оказавшись в крови, желчные кислоты усиливают синтез и выделение желчи в кишечник. Таким образом, сама желчь является желчегонным средством.

Обратная связь и положительная, и отрицательная улавливают и компенсируют те отклонения, которые уже возникли в организме, или произошло рассогласование между физиологическими параметрами, свойственными данному организму и фактическими их значениями. Пользуясь терминами кибернетики науки об управлении и автоматическом регулировании систем обратная связь функционирует на выходе системы, это восстановление измененных свойств организма.

Между тем в организме имеются регуляторные механизмы, способные предотвратить какиелибо нежелательные отклонения. Но для этого следует уловить сигнал «тревоги», раздражения, превышающий допустимое значение. Что делает собака, лизнув горчицу (так отучают иногда собак брать корм из чужих рук)? Она выплевывает предмет, у нее усиливается слюноотделение, она пытается очистить рот лапой. В этом случае вкусовые рецепторы вовремя отреагировали на поступившую информацию и осуществился ряд реакций, не допустивших попадание несвойственной собаке пищи (горчицы) в желудок. Такой принцип регуляции называется регуляцией «на входе» системы, или регуляцией «по возмущению» сигнала.

Оба принципа регуляции на входе и на выходе обычно проявляются во взаимодействии и имеют либо защитный, либо компенсаторный характер.

В качестве примера рассмотрим с точки зрения управления механизмы теплорегуляции. В зимнее время, в самые лютые морозы температура крови и внутренних органов у животных остается такой же, как летом около 38 40°С. Перепад же температур с окружающим воздухом оказывается почти 100°С. Каким образом достигается температурный гомеостаз?

Вначале реагируют на низкую температуру наружного воздуха кожные рецепторы (терморецепторы) и запускают компенсаторные реакции, которые увеличивают образование тепла в организме и ограничивают рассеивание тепла в пространство. Это регуляция «по возмущению», то есть на входе системы. Если эти механизмы не удерживают температуры тела в нормальных границах, и температура крови начнет снижаться, то терморегуляция будет осуществляться по принципу отрицательной обратной связи: снижение температуры крови приведет к возбуждению терморецепторы кровеносных сосудов и это вызовет дополнительные реакции, также направленные на сохранение постоянной температуры тела (усиление обмена веществ, мышечная дрожь, ограничение теплоотдачи).

Лимбическая система мозга.

Лимбическая система мозга В 1937 году нейроанатом Джеймс Папец (Papez J.) обратил внимание на существование многочисленных связей между структурами мозга, расположенными в виде кольца в области соединения ствола и полушарий, и предложил объединить их в лимбическую систему (лат. limbus – кайма). Кольцо лимбической системы образуют мамиллярные тела, гиппокамп, миндалины и свод, проходящий дугой от гиппокампа к мамиллярным телам и перегородке. Нейроны перегородки образуют несколько пучков аксонов, соединяющих её с мамиллярными телами, миндалинами и гиппокампом – в результате образуется кольцо, по которому может циркулировать возбуждение. В лимбическую систему принято также включать соседние области древней и старой коры мозга: прилегающие к гиппокампу грушевидные доли и поясные извилины – они занимают медиальную поверхность больших полушарий непосредственно над мозолистым телом и, как пояс, огибают таламус. Лимбические структуры связаны хорошо развитыми проводящими путями с обонятельным мозгом и гипоталамусом (Рис. 13.3).

В частности гипоталамус соединён с гиппокампом и перегородкой волокнами свода, а терминальной полоской (stria terminalis) и вентральным амигдалофугальным путём – c миндалиной. Через гипоталамус лимбическая система взаимодействует со средним мозгом, через гипоталамус и передние ядра таламуса она связана с лобной корой. Гиппокамп и миндалины, расположенные в височных долях, непосредственно сообщаются с ассоциативными областями коры. Папец высказал предположение о реципрокных отношениях гипоталамуса и кортикальных центров познания и эмоций, он считал, что, получив информацию от кольца лимбических структур, гипоталамус начинает затем взаимодействовать с корой через поясную извилину и передние ядра таламуса. Эти представления существенно пересмотрел и развил американский физиолог Пол Мак-Лин (McLean P. D.), который обосновал представление о важной роли "висцерального мозга" для регуляции эмоционального поведения и коррекции внешних и внутренних сигналов. Он также предложил модель иерархического деления мозга на три отдела в соответствии с этапами его эволюционного развития (Рис. 13.4): 1) древний мозг рептилий (ствол, промежуточный мозг и базальные ганглии); 2) старый мозг млекопитающих (структуры лимбической системы) и 3) новый мозг млекопитающих (кора больших полушарий).

Функция древнего мозга рептилий, по мнению Мак-Лина, заключается в контроле врождённых поведенческих актов; такой мозг недостаточно пластичен и обеспечивает выживание только при постоянных условиях среды. Древний мозг млекопитающих ("висцеральный мозг") формирует эмоции, увеличивает объём памяти и даёт возможность возникновения простых форм поведения. Новый мозг прибавляет возможность произвольного управления эмоциями, прогнозирования поведения и т.п. Мак-Лин рекомендовал не забывать, что в каждом человеке присутствует мозг лошади и крокодила, и с этим обстоятельством порой приходится считаться. Изучение функций лимбической системы проводилось путём наблюдения за последствиями удаления или разрушения отдельных её структур (например, миндалин, гиппокампа), электрической стимуляции этих структур, регистрации их электрической активности (с помощью вживлённых электродов) при различных формах поведения. Использование методов нейрохимии и нейрофармакологии позволило обнаружить различные нейромедиаторы и рецепторы у нейронов, входящих в состав лимбической системы. Применение метода самораздражения (См. 13.5) позволило обнаружить такие структуры мозга, электрическая стимуляция которых вызывает приятные или, напротив, неприятные ощущения.

К позитивным эмоциогенным зонам относятся латеральный и перивентрикулярный гипоталамус, перегородка, покрышка среднего мозга: здесь сосредоточены тела или аксоны моноаминэргических нейронов, использующих в качестве медиаторов дофамин или норадреналин. Негативных эмоциогенных зон в мозгу гораздо меньше, чем позитивных, а многие структуры (и в том числе, по-видимому, гиппокамп) нейтральны – их стимуляция не сопровождается приятным или неприятным ощущением (в мозгу крысы около 60% структур нейтральны, раздражение 35% исследованных областей мозга вызывает удовольствие, а стимуляция остальных 5% – страдание). В мозгу человека также оказалось больше областей, раздражение которых вызывает приятные ощущения или удовольствие.

Роль мезолимбической системы в формировании мотиваций

Классическая теория мотиваций объясняла их возникновение и прекращение по следующей схеме: лишение еды или питья, температурного комфорта или полового партнёра (для такого рода ограничений часто используется термин депривация) приводит к мотивированному поведению, в результате которого существующая потребность удовлетворяется, а как только будет достигнута эта цель, мотивация просто утратит смысл. В начале 50-х годов ХХ столетия Дж. Олдс (Olds J.) выполнявший диссертацию под руководством профессора П. Милнера (Milner P.), исследовал поведение крыс со вживлёнными в мозг стимулирующими электродами. Обычно крысы, подвергнувшиеся неприятному электрическому разряду, не возвращались в то место, где на них действовал ток. Но как-то одна из подопытных крыс стала регулярно к нему возвращаться. Тогда Олдс, посчитав что у этой крысы низкий порог чувствительности, увеличил силу раздражителя, но добился только того, что крыса ещё охотнее стала возвращаться к месту электрической стимуляции. При вскрытии животного было установлено, что стимулирующий электрод оказался в заднем отделе гипоталамуса, что первоначально не планировалось в экспериментах Олдса. Тогда Олдс и Милнер вживили электроды в эту же область мозга другим крысам, а в клетке, куда их помещали, сделали педаль, при нажатии на которую замыкалась электрическая цепь, и мозг немедленно подвергался действию тока (Рис.13.5).

Это нововведение привело к открытию феномена самораздражения: крысы непрерывно нажимали на педаль (отдельные животные делали это несколько тысяч раз на протяжении одного лишь часа) и явно предпочитали такое занятие даже приёму пищи, несмотря на предшествующее голодание в течение суток. Так возникло представление о "центрах удовольствия (поощрения)". Дальнейшими исследованиями такие центры были найдены и в других областях мозга, а наряду с ними удалось обнаружить структуры, стимуляции которых животные всячески стремились избежать – эти регионы представляют собой "центры избегания (наказания)". Известный исследователь мозга Г.Мэгун (Magoun H. W.) задал в связи с этими экспериментами хороший риторический вопрос: "Не находится ли рай и ад в мозгу животного?" Вскоре этот вопрос стал уместным и применительно к мозгу человека, в котором также были найдены как центры удовольствия, так и области, раздражение которых сопровождалось неприятными ощущениями. Всё это позволило рассматривать мотивации с гедонистической точки зрения (от греч. hedone – удовольствие), согласно которой поведение мотивируется не только неприятными ощущениями, побуждающими к определённым действиям, но и получением удовольствия от результата таких действий. В процессе приобретения жизненного опыта образуются следы памяти о совпадении определённых действий с исчезновением неприятных ощущений и получением удовольствия, и эта память начинает использоваться в дальнейшем. В настоящее время известно, что переживание удовольствия связано с активацией областей мозга, которые иннервирует мезолимбическая система, образованная дофаминэргическими нейронами (Рис. 13.6).

Мотивационная характеристика темы: Мотивации являются основой целенаправленного поведения и психической деятельности. Поэтому проблема механизмов их формирования занимает одно из ведущих мест среди других вопросов интегративной функции мозга.

Каждая мотивация сопровождается субъективным переживанием, т.е. вызывает эмоциональную реакцию. Знание физиологических основ эмоций, является важным для понимания их роли в организации психических процессов и поведения здорового человека, а также в развитии психосоматических заболеваний.

В последнее время все большее внимание физиологов привлекают методики искусственного изменения состояния сознания – гипнотизация и медитация. Физиологическое обоснование этих методик открывает широкие возможности для наиболее эффективного их применения при лечении психосоматических заболеваний, а также в комплексе общеоздоровительных мероприятий.

Цель занятия: изучить физиологические основы эмоций, мотиваций и особых форм сознания, а также научиться определятьличностную и ситуативную тревожность по Спилбергеру-Ханину и оценивать свои эмпатические свойства.

Основные вопросы: Понятие о биологических и социальных потребностях человека. Мотивации, их виды и физиологические механизмы. Биологическое значение эмоций. Роль различных структур мозга в формировании эмоциональных состояний. Вегетативные и моторные компоненты эмоций. Значение эмоций в целенаправленной поведенческой деятельности. Эмоциональное напряжение (стресс), его роль в развитие психосоматических заболеваний у человека. Особые состояния сознания. Виды и фазы сна. Представления о механизмах сна. Сновидения. Искусственно измененные состояния сознания. Физиологические основы гипнотических состояний.

Движущей силой психической деятельности и поведения являются потребности живого существа, выражающие его зависимость от конкретных условий существования и развития. Различные по своей продолжительности отклонения того или иного показателя внутренней среды организма от уровня, определяющего нормальный метаболизм, называют биологическими (метаболическими ) потребностями .

В своих первичных биологических формах потребности выступают как нужда организма в чем-то, находящемся во внешней среде, и необходимом для обеспечения его жизнедеятельности. В процессе жизнедеятельности одновременно потребляется и расходуется множество веществ. Поэтому общая потребность организма в каждый определенный период времени мультипараметрична. Тем не менее, одна из потребностей всегда является доминирующей - наиболее важной в данный момент для выживания особи и вида, а остальные выстраиваются по отношению к ней в определенной последовательности. После удовлетворения ведущей потребности доминирующей становится другая, наиболее значимая и т.д.


Биологических потребностей у живого организма может быть множество. Все они объединяются в большие группы пищевых , половых и оборонительных потребностей , обеспечивающих выживание особи и продолжение рода. Большинство из них обусловлено необходимостью поддерживать постоянство внутренней среды и биологическую индивидуальность организма.

Биологические потребности человека отличаются от аналогичных потребностей животных. Основное отличие связано с социализацией биологических потребностей человека, которые могут существенно изменяться под влиянием индивидуального обучения в соответствии особенностями культуры, моральными и правовыми законами общества. Так, например, социализация пищевой потребности породила высоко ценимое искусство кулинарии и эстетизации процесса потребления пищи.

Взаимодействие индивидуума с другими представителями своего вида обеспечивают социальные потребности (зоосоциальные у животных ):

1) потребность принадлежать к определенной социальной группе,

2) потребность занимать в этой группе определенное положение в соответствии с субъективным представлением индивидуума о ее иерархической организации,

3) потребность следовать поведенческим образцам, принятым в данной группе.

Потребности побуждают организм к осуществлению определенных форм деятельности, необходимых для сохранения и развития индивидуума, продолжения рода. Вызванное определенной биологической потребностью эмоционально окрашенное возбуждение, избирательно объединяющее нервные элементы различных этажей ЦНС для формирования поведения, ведущего к удовлетворению исходной потребности, называют биологической (низшей ) мотивацией (лат. «moveo» - двигаю).

На основе низших мотиваций, формируются поведенческие акты, которые удовлетворяют биологические потребности и обеспечивают сохранение вида или продолжение рода. К ним относятся мотивации голода, жажды, страха, агрессии, половое влечение и другие побуждения.

Не следует отождествлять мотивации и потребности. Потребности далеко не всегда преобразуются в мотивационные возбуждения. В то же время без должного мотивационного возбуждения невозможно удовлетворение соответствующих потребностей. Нередко имеющаяся потребность по тем или иным причинам не сопровождается мотивационным побуждением к действию.

Любая биологическая мотивация обусловлена соответствующей метаболической потребностью и, охватывая многие структуры мозга, носит системный характер. Нервные и гуморальные сигналы о доминирующей потребности поступают в гипоталамус, где вызывают возбуждение инициативных мотивациогенных центров, которые оказывают восходящее активирующее влияние на лимбические, ретикулярные и корковые структуры мозга. В результате возникает эмоционально окрашенное ощущение потребности, которое имеет негативный характер, и формируется специфическая для каждой потребности интеграция (объединение) корково-подкорковых структур, обеспечивающая целенаправленное адаптивное поведение.

Особенность нейронов мотивациогенных центров гипоталамуса состоит в их тесных функциональных контактах с кровеносными капиллярами и в специфике метаболических процессов. Каждая группа гипоталамических нейронов использует в своем метаболизме только определенные гуморальные факторы и при изменении их содержания избирательно приходит в состояние возбуждения. Благодаря этому, нейроны мотивациогенных центров обладают свойствами рецепции определенных внутренних потребностей.

На основе рецепторных свойств мотивациогенные центры гипоталамуса обладают способностью к трансформации биологической потребности в процесс нервного возбуждения. Возбуждение в нервных клетках, составляющих эти центры, возникает по триггерному механизму - не сразу при появлении потребности, а благодаря постепенному возрастанию их возбудимости до критического уровня. При достижении этого уровня начинается разрядная деятельность нейронов, которая продолжается до тех пор, пока не будет удовлетворена вызвавшая ее потребность.

Удовлетворение пищевых, половых и других биологических потребностей психически здорового человека приурочено к определенному месту и времени. Так, в отличие от животного, не имеющий денег голодный человек может долго стоять, истекая слюной, перед заполненной продуктами витриной магазина, не совершая никаких противоправных действий.

На основе врожденных биологических побуждений путем общения строятся социальные (высшие ) мотивации , которые определяются общественными нормами морали и права, присущими каждому социальному обществу. Социальные мотивации, в отличие от биологических побуждений, формируются в процессе общественного воспитания. К ним относятся стремление к образованию, овладению определенной профессией, приобщению к культурным ценностям общества и др.

Выделяют три основных свойства мотивационного состояния:

1) химическая специфичность мотивационного возбуждения,

2) способность формировать корково-подкорковую интеграцию мотивационных возбуждений,

3) пейсмекерная роль гипоталамических инициативных центров в структуре мотивационного возбуждения.

Химическая специфика мотивационного возбуждения проявляется в способности различных химических веществ избирательно влиять на характер и выраженность мотивационных состояний. Она обусловлена специфической химической интеграцией различных физиологически активных веществ, обеспечивающих формирование определенного мотивационного состояния.

Корково-подкорковая интеграция заключается в способности мотиваций объединять специфический комплекс нервных элементов в высших отделах ЦНС. Мотивационное состояние представляет собой интегрированный комплекс избирательно объединенных корково-подкорковых структур, каждая из которых вносит свой вклад в мотивационное возбуждение.

В структуре мотивационного возбуждения ведущая, пейсмекерная роль принадлежит гипоталамическим центрам. Гипоталамус обеспечивает избирательное морфологическое и функциональное объединение нервных элементов различных отделов ЦНС. Возбуждение в гипоталамических центрах возникает периодически, по мере достижения критического уровня в процессе нарастания соответствующей потребности. Удовлетворение потребности ведет к торможению гипоталамических мотивациогенных центров и распаду системы мотивационного возбуждения мозга, что субъективно переживается в виде положительной эмоции.

В каждый момент времени преобладает та мотивация, в основе которой лежит наиболее важная текущая биологическая потребность. Сила потребности, связанная со степенью отклонения физиологических констант, отражается на величине мотивационного возбуждения и определяет его доминантный характер. Доминирующее мотивационное возбуждение, которое побуждает к определенному целенаправленному поведению, сохраняется до тех пор, пока не будет удовлетворена вызвавшая его потребность. При этом все посторонние раздражители усиливают доминирующую мотивацию, которая подавляет все другие виды деятельности.

Одним из главных механизмов внутренней регуляции психической деятельности и поведения, направленных на удовлетворение актуальных потребностей являются эмоции (лат. «emovere» – возбуждать, волновать).

Эмоция – это субъективное переживание человека самого себя, своего состояния, своих потребностей и возможностей их удовлетворения, а также отношение к факторам внешней среды, в том числе и к другим людям, которое сопровождается генерализованным возбуждением головного мозга и определенной сомато-вегетативно-эндокринной реакцией.

Эмоции возникли в процессе эволюции как средство, при помощи которого живые существа определяют биологическую значимость состояния организма и внешних воздействий. В ходе эволюционного развития эмоции дифференцируются и образуют различные виды, которые отличаются по психологическим особенностям и закономерностям протекания. Простейшая форма эмоций – врожденные гедонические (греч. «hedone» – наслаждение) переживания, сопровождающие отдельные жизненно важные воздействия (вкусовые, обонятельные, тактильные и др.). Уже на этом уровне эмоции дифференцируются на два полярных класса – положительные (приятные ) и отрицательные (неприятные ).

По содержанию эмоции подразделяются на простые и сложные . К простым эмоциям относятся десять фундаментальных переживаний: интерес, радость, удивление, горе - страдание, гнев, отвращение, презрение, страх, вина и стыд. Из соединения фундаментальных эмоций возникают такие сложные комплексные эмоциональные состояния как любовь, эстетическое чувство, патриотизм и др.

Общее эмоциональное состояние, окрашивающее в течение некоторого времени все переживания человека, называют настроением . Настроение характеризуется эмоциональным тоном : положительным – веселое, жизнерадостное, повышенное или отрицательным – грустное, подавленное, пониженное. Относительно устойчивое настроение с положительным эмоциональным тоном возникает в результате удовлетворения потребностей, а с отрицательной окраской – в случае неудовлетворения существующих запросов и устремлений человека. Среди факторов, определяющих индивидуальные различия людей в отношении смены настроения, важное место занимают характеристики темперамента.

Настроение существенно зависит от общего состояния здоровья, деятельности внутренних органов и особенно от тонуса нервной системы. С этом смысле, настроение – непосредственная оценка личностью благополучия внутренней жизни организма. Информация о деятельности внутренних органов, которая поступает в головной мозг, как правило, не осознается. Поэтому причины того или иного настроения не всегда ясны переживающему их человеку, а тем более, окружающим его людям.

Самой мощной эмоциональной реакцией является аффект (лат. «affectus» – душевное волнение, страсть) – сильное и относительно кратковременное эмоциональное переживание, которое сопровождается резко выраженными двигательными и висцеральными проявлениями на фоне ослабления сознательного контроля текущих событий.

Аффекты развиваются в критических условиях, в связи с резким изменением важных для субъекта жизненных обстоятельств при его неспособности найти адекватный выход из опасных для жизни, чаще всего неожиданно возникающих ситуациях. Обладая свойствами доминанты, аффективные реакции тормозят другие психические процессы и навязывают тот или иной стереотипный способ «аварийного» разрешения ситуации. Большинство таких стереотипных реакций (оцепенение, бегство, агрессия) императивно направлены на сохранение жизни. Поэтому, они могут быть социально неадекватными.

У человека аффективные состояния могут вызываться не только факторами, угрожающими его физическому существованию или препятствующими удовлетворению его основных биологических потребностей, но и неблагоприятными социальными отношениями, например, субъективно переживаемыми несправедливостью, оскорблением и т.п. Основная отличительная черта аффекта у человека – ослабление сознательного контроля текущих событий. Аффект возникает внезапно, изменяя основные характеристики внимания так, что в поле осознанного восприятия удерживаются только те объекты, которые связаны с непосредственным переживанием. Все остальные раздражители не осознаются, и это одна из причин практической неуправляемости аффективной реакции.

В состоянии аффекта затрудняется процесс мышления, способность предвидеть результаты своих действий. В таких условиях социально адекватное поведение становится невозможным. Чрезвычайно сильное возбуждение, перейдя предел работоспособности нервных клеток, сменяется безусловным охранительным торможением - возникает эмоциональный шок и ступор (лат. «stupor» - оцепенение), который проявляется в невозможности осознано реагировать на внешние события. При этом, утрата сознательного контроля может привести к неспособности впоследствии вспомнить отдельные эпизоды и даже полной амнезии на экстремальные события.

Было бы неверно думать, что аффект абсолютно неуправляем. Несмотря на кажущуюся внезапность, аффект имеет определенные стадии развития. И если на конечных этапах, когда субъект полностью теряет сознательный контроль над собой, остановиться практически невозможно, то вначале это может сделать практически любой нормальный человек.

Эмоции выполняют шесть основных функций:

1) отражательную,

2) приспособительную,

3) побудительную,

4) подкрепляющую,

5) переключательную,

6) коммуникативную.

Отражательная (оценочная ) функция эмоций выражается в обобщенной оценке событий. Эмоции обеспечивают почти мгновенную интегральную оценку внешней среды и внутреннего состояния, что позволяет определить значимость воздействующих факторов еще до того, как будет определена локализация источника воздействия. Как особое внутреннее состояние и субъективное переживание, эмоция выполняет функцию быстрой оценки обстоятельств ситуации на основе возникшей потребности и интуитивного представления о возможностях ее удовлетворения.

Возможность быстрой оценки ситуации обусловливает приспособительную функцию эмоций, которая создает наиболее благоприятные условия для выживания живых существ в неблагоприятных условиях среды обитания и позволяет эффективнее удовлетворять их потребности.

Отражательная оценка событий непосредственно связана с побудительной функцией эмоции. Это обусловлено тем, что эмоциональное переживание, обеспечивая быструю оценку потребности, побуждает к действию, способному ее удовлетворить.

В связи с тем, что субъективное переживание принимает непосредственное участие в процессах обучения и памяти, выделяют подкрепляющую функцию эмоции. Значимые события, вызывающие эмоциональные реакции, быстрее и надолго запечатлеваются в памяти. Награда, сопровождающаяся положительной эмоцией, или избегание отрицательной эмоции, возникающей при наказании, являются теми подкрепляющими факторами, которые облегчают выработку условного рефлекса.

Переключательная функция эмоций состоит в том, что они могут побуждать к изменению поведения. Особенно отчетливо это проявляется при конкуренции мотиваций, в результате которой определяется доминирующая потребность.

Переключательная функция эмоций чаще всего обнаруживается в экстремальных условиях, когда возникает борьба между естественным для человека инстинктом самосохранения и социальной потребностью следовать определенной этической норме. При этом конфликт потребностей переживается в форме борьбы между страхом с одной стороны и чувствами долга и стыда с другой. Исход зависит от силы побуждений и личностных установок субъекта.

Большое значение имеет коммуникативная функция эмоций. Жесты, мимика и пантомимика позволяют человеку информировать о своих переживаниях других субъектов. При этом каждое эмоциональное состояние имеет специфическое внешнее выражение.

Экспрессивные движения и особенно мимика выполняют адаптивную функцию. Это обусловлено тем, что мимические сигналы позволяют передавать информацию не только о состоянии, но и о намерениях индивидуума. Так, выражение испуга сигнализирует о намерении спасаться бегством, а эмоция гнева воспринимается, как выражение стремления вступить в борьбу.

Существует множество теорий эмоций, каждая из которых отражает одну определенную сторону лежащих в их основе физиологических процессов. Теории эмоций подразделяются на три группы:

1) периферические,

2) центральные,

3) системные.

Согласно периферической теории У. Джеймса и Г. Ланге (1884) эмоции обусловлены поступающими в мозг сигналами о функциональных и органических изменениях, возникающих в мышцах, сосудах и внутренних органах. Такие изменения рассматриваются авторами периферической теории как причина эмоций.

Каждый вид эмоционального переживания детерминирован определенным комплексом сомато-вегетативных реакций. По Джеймсу «мы печальны потому, что плачем, боимся потому, что дрожим, а радуемся потому, что смеемся». Следовательно, отрицательные эмоции можно подавить, если намеренно совершать действия, характерные для положительных эмоций.

Зависимость переживаний от деятельности висцеральных органов проявляется не только у здорового, но и у больного человека. Так, нарушение кровоснабжения миокарда при спазме коронарных сосудов часто сопровождается страхом смерти. Это негативное переживание может быть устранено лекарственными препаратами, расширяющими коронарные сосуды.

Центральные теории предполагают существование эмоциогенных зон в ЦНС. Особую роль в формировании эмоции играют лимбическая система (особенно гипоталамус, поясная извилина и миндалевидные тела), лобная и височная кора больших полушарий.

Значение отдельных центров гипоталамуса для формирования эмоциональных состояний было подтверждено в электрофизиологических исследованиях Дж. Олдса (1954). Обнаружено, что при раздражении одних участков гипоталамуса (центр удовольствия) у животных возникали приятные ощущения, к возобновлению которых они активно стремились. Раздражение других участков гипоталамуса (центр неудовольствия) вызывало отрицательные эмоции и стремление избежать воздействия на эти структуры.

Поражение лобных долей коры приводит к глубоким нарушениям эмоциональной сферы – возникает эмоциональная тупость и растормаживание примитивных эмоций и влечений. При этом у человека, в первую очередь, страдают высшие эмоции, связанные с социальными отношениями и творчеством. Разрушение височной коры ведет к подавлению агрессивности и страха. Аналогичный эффект наблюдается при повреждении миндалины.

В целом, эмоции являются интегративной реакцией головного мозга, формирующейся на основе объединения корковых и подкорковых структур. Выделяют две основных системы, участвующих в формировании эмоций – информационная (фронтальная кора и гиппокамп) и мотивационная (миндалина и гипоталамус). Функцию высшего координатора различных систем мозга, вовлекаемых в организацию эмоции, выполняет поясная извилина, которая имеет многочисленные двухсторонние связи со многими подкорковыми структурами и корой больших полушарий.

Эмоциональные возбуждения, являясь неотъемлемым компонентом биологических мотиваций, могут первоначально возникать в мотивациогенных центрах гипоталамуса, а затем генерализованно распространяются в восходящем направлении на лимбические структуры и кору головного мозга. Таким путем формируются эндогенные эмоции - специфические, эмоционально окрашенные субъективные ощущения, связанные с пищевыми, половыми и оборонительными биологическими потребностями.

Экзогенные эмоции возникают в результате внешних воздействий. В этом случае возбуждения, вызванные действием на организм внешних факторов, первоначально по специфическим сенсорным путям достигают нейронов соответствующих проекционных зон коры больших полушарий и активируют механизмы памяти. Только после этого возбуждения распространяются в нисходящем направлении на эмоциогенные подкорковые центры, формируя в зависимости от внешних воздействий и информации, содержащейся о них в памяти, в одних случаях положительные, а в других – отрицательные эмоциональные переживания.

Положительная окраска субъективного переживания может быть обусловлена повышением концентрации дофамина, содержащегося в центрах, активность которых связывают с появлением положительных эмоций. Другие катехоламины – адреналин и норадреналин участвуют в формировании отрицательных эмоций. Уровень серотонина также влияет на эмоции. С ростом его содержания в головном мозге настроение у человека поднимается, а истощение серотонина вызывает состояние депрессии. Нарушения функционирования холинергической системы мозга ведут к психозу с преимущественным поражением интеллектуальных процессов.

На эмоциональное состояние сильное влияние оказывают наркотики, которые стимулируют центры положительных эмоций и тормозят центры отрицательных переживаний. Состояние эйфории, вызываемое наркотиком, является той положительной эмоцией, которая работает как сильное подкрепление и обеспечивает быстрое формирование устойчивых условнорефлекторных связей. Привлекательность эйфории определяется не только положительным гедоническим фоном, но и тем, что человек переживает подъем умственной и физической активности, его работоспособность резко повышается, он мыслит ясно и четко. Однажды испытав действие наркотика, субъект в дальнейшем стремится воспроизвести испытанные приятные переживания. При прекращении поступления наркотика возникает отрицательная эмоция, которая стимулирует повторное применение наркотического препарата независимо от воли субъекта. При этом для достижения прежних приятных ощущений требуется все большая доза, что в конечном итоге быстро ведет к распаду личности, деградации, несовместимым с жизнью физическим нарушениям внутренних органов и смерти.

Как бы ни формировались эмоции, на внутренней метаболической основе или в результате внешних воздействий, они имеют единый механизм - восходящее активирующее влияние подкорковых эмоциогенных центров на кору головного мозга. С этих позиций, эмоциональное состояние представляет собой организованный комплекс возбуждения корково-подкорковых образований, обеспечивающий субъективную окраску психической деятельности и поведения.

Вклад в эмоциональные переживания вносят как структуры правого, так и левого полушария головного мозга. Так, правое полушарие в большей степени связано с негативными эмоциями. Поэтому, при снижении его активности улучшается настроение и возникает эйфория, крайним проявлением которой может быть беспричинный смех. Эмоциональное состояние благодушия, безответственности и беспечности под влиянием алкоголя обусловлено его преимущественным угнетающим воздействием на правое полушарие. Напротив, левое полушарие связано с позитивными эмоциями. Поэтому его угнетение вызывает сдвиг в эмоциональной сфере в сторону отрицательно окрашенных переживаний. В связи с этим, при поражении левого полушария у человека его настроение ухудшается.

В целом, знак эмоции зависит от межполушарных отношений (главным образом, фронтальной коры). Зависимость знака эмоции от соотношения активности левой фронтальной коры (ЛФК) и правой фронтальной коры (ПФК) может быть представлена в виде двух неравенств:

ЛФК>ПФК=положительные эмоции,

ПФК>ЛФК=отрицательные эмоции.

Эмоциональная реакция характеризуется собственно субъективным переживанием и его соматическими и вегетативными проявлениями, что является основанием для выделения системных теорий , которые рассматривают эмоции как интегративную реакцию не только мозга, но и всего организма.

Согласно системной биологической теории П.К. Анохина, эмоции возникли в процессе эволюции как средство быстрой оценки потребностей и их удовлетворения в процессе целенаправленной поведенческой деятельности. Любые потребности субъективно неприятны. Отрицательная эмоция позволяет быстро и надежно оценить потребность и стимулировать поведенческую деятельность, направленную на их удовлетворение. Удовлетворение потребности вызывает приятные ощущения. Возникающая при этом положительная эмоция позволяет быстро оценить удовлетворение потребности и завершить деятельность при достижении полезного поведенческого результата.

Эмоции тесно связаны с поступающей в мозг информацией о состоянии внешней и внутренней среды. Согласно системной потребностно-информационной теории , эмоциональные состояния определяются качеством и интенсивностью доминирующей потребности индивидуума и оценкой, которую он дает вероятности ее удовлетворения. Правило возникновения эмоции выражается формулой: Э=-П (И н -И с), где Э – сила и качество эмоции; П – сила и качество доминирующей потребности; (И н -И с) – субъективная оценка вероятности (возможности) удовлетворения потребности; И н – информация о средствах и времени, прогностически необходимых для удовлетворения потребности; И с – информация о средствах и времени, которыми реально располагает субъект в данной ситуации.

Если у субъекта нет потребности (П=0), то и эмоции он не испытывает (Э=0). Если субъективная вероятность удовлетворения потребности велика (И н -И с <0), появляется положительное переживание. Отрицательные эмоции возникают, если субъект оценивает возможность удовлетворения потребности как маловероятные (И н -И с >0). Таким образом, сознательно или на подсознательном уровне человек постоянно сравнивает информацию о том, что требуется для удовлетворения потребности с тем, какими средствами он располагает для этого, и в зависимости от их соотношения испытывает различные эмоции.

Отрицательные эмоции – источник внутренней энергии и побуждающая сила преодоления трудностей. Они способствуют целенаправленной деятельности, и, поэтому, являются необходимыми для нормальной жизни. Однако острые или длительные и часто повторяющиеся отрицательные эмоции характеризуются тремя негативными свойствами:

1) обладают длительным последействием, могут продолжаться в течении нескольких часов и дней после прекращения действия раздражающих факторов,

2) способны суммироваться,

3) при частых проявлениях приобретают патологически устойчивый (застойный) характер.

Переход отрицательных эмоций в устойчивую форму чаще всего наблюдается в конфликтных ситуациях. Особенно опасны острые или длительные и непрерывные конфликтные ситуации, когда субъект при наличии выраженной социальной или биологической потребности не имеет возможности достичь полезного приспособительного результата, удовлетворить эту потребность. В таких условиях эмоциональное возбуждение негативно отражается на деятельности внутренних органов. Сигнализация о неблагополучии внутренней жизни организма поддерживает отрицательное эмоциональное переживание, формируется порочный круг эмоционального перенапряжения - эмоциональный стресс .

Эмоциональный стресс – это системная реакция организма, которая развивается в ответ на разнообразные экстремальные воздействие при невозможности удовлетворения жизненно важных биологических или социальных (у человека) потребностей.

Стрессовые состояния существенно влияют на поведенческую деятельность человека. Люди с разным типом ВНД не одинаково реагируют на однотипные психологические нагрузки. По особенностям реагирования у человека различают «стресс льва» и «стресс кролика». «Стресс льва» связывают с увеличением выделения норадреналина. Он характеризуется повышением активности, мобилизацией защитных сил и повышением эффективности деятельности. «Стресс кролика», напротив, характеризуется пассивностью, общим торможением и дезорганизацией деятельности. Он связан с повышенным выделением адреналина.

Поведение человека в стрессовой ситуации зависит от психологической подготовки, включающей умение быстро оценивать обстановку, навыки мгновенной ориентировки в неожиданных обстоятельствах, волевую собранность и решительность, а также опыт поведения в аналогичных ситуациях.

В развитии эмоционального стресса различают три последовательных стадии:

1) стадия тревоги,

2) стадия резистентности,

3) стадия истощения.

Стадия тревоги возникает при внезапном действии стресс-фактора и проявляется в форме шока, который сопровождается сильным эмоциональным возбуждением. При этом происходит мобилизация защитных сил организма и перераспределение его резервов, повышающих устойчивость по отношению к конкретному экстремальному фактору.

Стадия резистентности характеризуется повышением устойчивости организма в отношении действия стрессовых факторов. Все параметры, выведенные из равновесия в первой фазе, стабилизируются на новом уровне.

Стадия истощения возникает при продолжающемся воздействии экстремальных факторов и характеризуется состоянием психической дезадаптации, угнетением механизмов защиты.

Длительный или периодически повторяющийся эмоциональный стресс сопровождается активацией симпато-адреналовой системы , что вызывает:

1) сужение кровеносных сосудов,

2) положительные кардиотропные эффекты - увеличение силы и частоты сердечных сокращений, повышение возбудимости и проводимости сердечной мышцы,

3) снижение диуреза – уменьшение количества выделяемой мочи,

4) гиперволемию – повышение объема циркулирующей крови,

5) повышение системного артериального давления,

6) расслабление гладкой мускулатуры бронхов и торможение моторики желудочно-кишечного тракта,

7) гипергликемию – повышение концентрации глюкозы в крови,

8) повышение уровня обмена веществ,

9) активацию коры больших полушарий (что способствует усилению внимания и ясности мышления),

При однократном формировании отрицательной эмоции, стимуляция симпато-адреналовой системы способствует повышению работоспособности и адаптации к неблагоприятному воздействию, а в случае застойного характера стресса ведет к развитию заболеваний: артериальной гипертонии, нарушениям деятельности сердца, язвенным поражениям желудочно-кишечного тракта, астме, кожным заболеваниям, нарушениям половых функций и иммунитета. Нейтрализация нежелательных последствий отрицательных эмоций и предупреждение их перехода в застойное состояние без использования лекарственных препаратов могут быть достигнуты несколькими путями:

1) переключением на интенсивную мышечную работу,

2) переключением на деятельность, которая вызывает положительные эмоции,

3) оптимизацией режима труда и отдыха.

На психику и поведение значительное влияние оказывает функциональное состояние головного мозга – фоновая активность нервных центров, которая обеспечивает ту или иную конкретную деятельность.

Психическая деятельность может осуществляться как во время бодрствования - активного состояние мозга и сознания, а также организма в целом, которое позволяет ему воспринимать внешние и внутренние сигналы и реагировать на них адекватным поведением, так и на фоне особых состояний во время сна , гипнотизации или медитации .

Сон – это измененное состояние мозга и сознания, а также организма в целом, которое характеризуется обездвиженностью, изменением реакции на внешние раздражители, особыми фазами электрической активности мозга и специфическими соматовегетативными реакциями.

Человек примерно треть своей жизни проводит во сне, что обусловливает давний и пристальный интерес у исследователей к этому состоянию. В настоящее время выделяют четыре группы теорий сна:

1) нервные,

2) гуморальные,

3) нейрогуморальные,

4) информационные.

Согласно нервным теориям сон является результатом изменения функциональной активности ЦНС. Нервные теории сна подразделяются на три подгруппы: корковые , подкорковые и корково-подкорковые .

Корковая теория И.П. Павлова рассматривает сон как следствие возникновения торможения, охватывающего кору больших полушарий. Сон, по И.П. Павлову, может быть активным и пассивным . Пассивный сон развивается вследствие торможения, которое возникает при отсутствии поступления афферентных возбуждений в кору больших полушарий. Активный сон обусловлен развитием разлитого тормозного процесса в коре вследствие переутомления нервных центров.

С точки зрения подкорковой теории швейцарского физиолога В. Гесса (1933), сон является результатом активации специфического центра, расположенного в гипоталамусе. Эксперименты на животных и клинические наблюдения показывают, что раздражение определенных зон гипоталамуса (центр сна Гесса) вызывает глубокий сон.

Согласно корково-подкорковой теории П.К. Анохина, лобные доли, заторможенные первично в результате утомления, высвобождают от своего непрерывного тормозного контроля гипоталамический центр сна. Активация этого центра вызывает блокаду прохождения афферентных сигналов через ствол мозга, т.е. возникает функциональная деафферентация коры больших полушарий, что ведет к еще большему ее торможению и развитию сна. Это подтверждается современными экспериментами, в которых установлено, что сон может наступать в результате прекращения проведения афферентных возбуждений через различные подкорковые структуры мозга за счет ослабления восходящих активирующих влияний ретикулярной формации на кору больших полушарий. При различных сосудистых, опухолевых или инфекционных поражениях подкорковых, особенно стволовых образований мозга отмечаются различные нарушения сна – от бессонницы до продолжительного летаргического сна.

В соответствии с гуморальными теориями ,сон наступает вследствие накопления в мозговой ткани специфических токсических продуктов метаболизма, которые названы гипнотоксинами . Кроме того, во время сна в головном мозге обнаружено избыточное накопление ряда биологически активных веществ – ГАМК, гистамина, серотонина, олигопептидов (пептид, вызывающий дельта-сон - ПВДС, глутатион), которые относят к «веществам сна» . Это свидетельствует о возможном участии этих химических веществ в развитии сонного состояния. Вместе с тем, гуморальным теориям сна противоречат наблюдения над сросшимися близнецами, имеющими общее кровоснабжение, но раздельную центральную нервную систему. Сон у таких близнецов может развиваться неодновременно.

Согласно нейрогуморальным теориям существенное значение для возникновения сна имеют ритмические изменения функциональной активности взаимодействующих гуморальных и нейрогенных факторов. Связующим звеном между ними является эпифизарный гормон – мелатонин.

Все большее внимание привлекает в настоящее время информационная теория Н. Винера. В соответствии с этой теорией в течение дня мозг накапливает огромный объем информации, которая переписывается в долговременную память во время сна, т.к. этот процесс требует отключение от сигналов внешнего мира. Сон прерывается, когда вся информация переработана и записана, и организм готов к восприятию новых впечатлений.

Различают физиологический и патологический сон. Физиологический сон может быть ежесуточным и сезонным . Он характеризуется периодичностью, которая связана с циркадианным (околосуточным), а у животных и сезонным циклом активности – покоя. В формировании ритмов сна и бодрствования участвует гормон эпифиза - мелатонин. Периодическое повышение содержания в головном мозге мелатонина определяет- переход от бодрствования ко сну. Эволюционно, этот процесс связан с адаптацией, проявляющейся в подавлении активности в период наименьшей доступности пищи, угрозы резких колебаний условий внешней среды и максимальной опасности со стороны хищников.

К основным видам патологического сна относят:

1) нарколепсию,

2) летаргию,

3) сомнамбулизм.

Примером нарушения у человека баланса сон – бодрствование является нарколепсия – состояние, характеризующееся дневными приступами непреодолимого сна. В самые неподходящие моменты, например, во время важного разговора, возникает внезапная потеря мышечного тонуса и наступает сон, часто сопровождающийся яркими сновидениями. Через 10-15 минут человек просыпается. После пробуждения у него не сохраняется никаких воспоминаний о том, что он делал перед сном.

Сомнамбулизм (снохождение, лунатизм) характеризуется сумеречным состоянием сознания при сохранении способности передвигаться. Выраженность и продолжительность приступа значительно варьируют. В самом легком случае человек может сесть в кровати, что-то пробормотать и снова заснуть. В других случаях сомнамбула встает, ходит, может одеться и выйти из дома. Глаза при этом открыты, лицо маскообразное. Лунатик может давать односложные ответы на простые вопросы. Утром сомнамбула ничего не помнит о происшедшем с ним ночью.

По фазовым изменениям ВНД в зависимости от соотношения силы раздражителя и величины ответной условнорефлекторной реакции выделяют пять последовательных фаз сна:

1) уравнительная,

2) парадоксальная,

3) ультрапарадоксальная,

4) наркотическая,

5) тормозная.

Уравнительная фаза характеризуется равной величиной ответных реакций на сильные и слабые раздражители. Парадоксальная фаза отличается реверсией силовых отношений: сильные раздражители вызывают меньшие рефлекторные реакции по сравнению со слабыми стимулами. Ультрапарадоксальная фаза характеризуется неадекватными ответами на сигнальные раздражители: стимулирующий сигнал тормозит, а тормозной, наоборот, стимулирует условнорефлекторную деятельность. Наркотическая фаза проявляется общим угнетением условнорефлекторной деятельности. Тормозная фаза характеризуется полным прекращением условнорефлекторной деятельности.

Эффективным средством объективного изучения периодов сонного состояния является электроэнцефалография – метод регистрации суммарной электрической активности мозга с поверхности головы. Полученная при регистрации запись - электроэнцефалограмма (ЭЭГ ) отражает функциональное состояние и интегративную биоэлектрическую активность нейронов головного мозга (рис.3.1).

В зависимости от частоты, амплитуды и формы ЭЭГ различают четыре вида биоэлектрических волн:

1) d-волны с частотой 0,5-3 Гц и высокой амплитудой, которые характерны для глубокого сна,

2) t-волны с частотой 4-7 Гц, наблюдаются при засыпании,

3) a-волны с частотой 8-13 Гц характерны для состояния относительного покоя при отсутствии звуковых и световых раздражителей (в темноте или с закрытыми глазами),

4) b-волны с частотой 14-30 Гц и низкой амплитудой регистрируются в состоянии активного бодрствования при действии раздражителей.

В покое или во время сна происходит синхронизация электрической активности мозга – амплитуда ЭЭГ-волн повышается, а частота уменьшается. При бодрствующем состоянии мозга и при пробуждении наблюдается десинхронизация: подавляется ритмичность, увеличивается частота и уменьшается амплитуда ЭЭГ-волн.

По показателям электроэнцефалограммы , сон подразделяется на медленный и быстрый . Эти виды сна отличаются не только по суммарной электрической активности мозга, но и двигательной активности глаз, тонусу мышц и вегетативным показателям.

Сонное состояние, сопровождающееся возникновением на ЭЭГ низкочастотных биопотенциалов, называется медленноволновым (ортодоксальным ) сном .

Медленноволновый сон характеризуется:

1) снижением двигательной активности,

2) урежением частоты дыхания и пульса,

3) снижением артериального давления,

4) снижением температуры тела.

По динамике сонного торможения в зависимости от внешних проявлений различают три фазы медленноволнового сна:

1) дремота,

2) легкий поверхностный сон,

3) глубокий сон.

Первая стадия сна – дремота (засыпание ), характеризуется исчезновением b-ритма, который сменяются низкоамплитудными a- и t-волнами (рис.3.2). В этот период, который продолжается от одной до десяти минут, происходит постепенное расслабление мышц, глаза закрываются. Пробуждение в этой фазе происходит легко, достаточно слегка потревожить засыпающего.

Вторая стадия – поверхностный (легкий ) сон характеризуется появлением «сонных веретен» - биопотенциалов с частотой 14-18 Гц, модулированных медленными волнами в d-диапазоне. С появлением первых же «сонных веретен» происходит отключение сознания; в паузы между веретенами человека легко разбудить.

В течение следующего получаса стадия «сонных веретен» сменяется фазой высокоамплитудных d-волн. В последующем, когда бессознательное состояние становится еще глубже, дельта-активность усиливается. Это наиболее глубокая стадия сна , которая характеризуется наибольшим порогом пробуждения и максимальным отключением от внешнего мира. При пробуждении в этой стадии человек с трудом ориентируется в пространстве и во времени.

Медленный сон периодически в течение ночи сменяется быстрой низкоамплитудной, десинхронизированной биоэлектрической активностью (13-30 Гц), которая похожа на ЭЭГ во время бодрствования. В связи с тем, что сон при этом не прерывается, а по некоторым показателям становится более глубоким, эта фаза сна получила наименование быстрого парадоксального сна . В эту фазу человек находится в глубоком сне, его нельзя разбудить сильными раздражителями, но он может проснуться от малейшего шороха. Быстрый сон (REM-фаза – англ. «rapid eye movements» – быстрые движения глаз) является особым состоянием мозга, при котором происходит наиболее интенсивное освобождение ЦНС от продуктов метаболизма. Во время быстрого сна накопленная за день информация из уровня кратковременного хранения переходит в долговременную память, что сопровождается перестройкой системы ассоциативных временных связей.

Быстрый сон характеризуется:

1) быстрыми движениями глаз,

2) подергиванием конечностей и лицевой мускулатуры,

3) повышением частоты дыхания и пульса,

4) повышением артериального давления.

Смена быстрого и медленного сна происходит через равные промежутки времени со средней длительностью 90 минут: 5-15 минут – быстрый сон и 70-85 минут – медленный сон. Выраженность и продолжительность парадоксальной фазы сна зависят от возраста. Плод большую часть внутриутробной жизни проводит в парадоксальной ЭЭГ-фазе сна, у новорожденных эта фаза составляет в общей структуре сна 60%, у взрослых – 20%, у пожилых людей ее продолжительность уменьшается еще больше. Длительность парадоксального сна нарастает после эмоциональных переживаний предшествующего дня.

В целом потребность сна у молодых людей составляет около 8 часов за ночь. Продолжительность ночного сна в 7 часов является недостаточной, а сон менее 6,5 часов в течение длительного времени может подорвать здоровье. Это обусловлено тем, что сон обеспечивает отдых организма, который позволяет восстановить ресурсы, израсходованные во время бодрствования. Однако во сне не происходит уменьшения частоты разрядной деятельности нейронов головного мозга по сравнению с состоянием бодрствования, а во время быстрого сна она даже повышается. Отмечается также возрастание расхода кислорода, что свидетельствует об увеличении обмена веществ. Во сне происходит сложная психическая деятельность, могут решаться интеллектуальные проблемы, которые невозможно было решить в состоянии активного бодрствования. Заучивание учебного материала перед сном помогает лучше его запомнить: если после заучивания следует 8-часовой сон, то воспроизведение будет более успешным, чем после 8-часового бодрствования.

Искусственное лишение человека сна является тяжелейшим испытанием. Особенно важна для нормальной жизнедеятельности парадоксальная фаза сна. Если человека избирательно лишать только REM-сна, это быстро приводит к существенным нарушениям психической деятельности.

Американский исследователь Демент в течение 5 ночей будил испытуемых-добровольцев во время парадоксального сна. Через несколько суток, у испытуемых днем наблюдалась повышенная возбудимость и рассеянность, возникли расстройства памяти. После 5 ночей без парадоксального сна ученый был вынужден прервать эксперимент, так как у всех восьми испытуемых начали появляться галлюцинации.

Нарушения сна очень распространено среди населения цивилизованных стран. Основными причинами нарушения сна у практически здоровых людей являются информационные перегрузки и недостаточность мышечной деятельности. Расстройство сна наблюдается у больных с органическими поражениями нервной системы, заболеваниями внутренних органов, у невротиков и лиц с психическими нарушениями.

Центральное место в борьбе с нарушениями сна занимает здоровый образ жизни, соблюдение режима труда и отдыха. В более тяжелых случаях применяются психотерапевтические методики (разъяснительная психотерапия, гипноз, аутогенная психотренировка), физиотерапия (в частности, электросон), наконец – фармакотерапия. Однако, следует иметь в виду, что сон, вызванный действием фармакологических препаратов, не всегда адекватен по своим механизмам нормальному сну (часто подавляется быстрый сон).

Нормальный сон применяется для снятия психоэмоционального напряжения, лечения невротических и астенических состояний, некоторых психосоматических заболеваний - ранних стадий артериальной гипертонии, нарушений сердечного ритма, язвенных поражений желудочно-кишечного тракта, кожных болезней и эндокринных расстройств.

Быстрый сон часто сопровождается сновидениями . Установлено, что если спящего человека разбудить в парадоксальную фазу сна, то он сообщает о сновидениях и их содержании. Этого не отмечается при пробуждении в медленноволновую фазу сна. Эта фаза обладает свойством «стирать сновидения». Все люди видят сны несколько раз за ночь, но сообщают о них, как правило, только те, кто просыпается в фазу быстроволнового парадоксального сна. Примерно четвертую часть всего сна человек проводит в парадаксальном сне, т.е. 1,5-2 часа за ночь. Поэтому, в среднем, около пяти лет жизни люди проводят в мире сновидений.

Сновидения – субъективное проявление деятельности головного мозга во время сна.

Современная материалистическая теория сновидений выдвинута на основании изучения закономерностей ВНД. Она включает в себя три основных положения:

1) сновидения – это реальное субъективное проявление деятельности головного мозга, которое обусловлено материальными физиологическими механизмами,

2) сновидения обусловлены частичным растормаживанием нервных процессов, связанных с прошлым жизненным опытом,

3) воспроизведение нервных следов в сновидениях обусловлено активацией корковых временных связей.

Сновидения – результат осуществляемого корой мозга синтеза тех сигналов, которые идут из различных сенсорных зон мозга, в первую очередь зрительных, активируемых во время парадоксального сна ретикулярной формацией. Кроме зрительных зон, которые имеют ведущее значение, затрагиваются слуховые, реже – тактильные, вкусовые и обонятельные области мозга.

Значение сновидений заключается в том, что в сновидениях используется механизм образного мышления для устранения проблем, которые не удалось решить во время бодрствования. Сновидения являются механизмом своеобразной психологической защиты – примирения нерешенных в состоянии бодрствования конфликтов, снятия тревоги и напряжения, восстановления душевных сил («утро вечера мудренее»). Показано, что сновидения обеспечивают переход от пассивного переживания жизненных трудностей к активному поиску путей их преодоления.

З. Фрейд – основатель психоанализа, считал, что сновидения представляют собой выражение наших, скрытых от сознания, желаний. По его мнению, правильно истолковав элементы сновидений, можно прийти к пониманию неосознаваемых влечений и психологических конфликтов, которые отражаются на деятельности человека в состоянии бодрствования.

Во время сна человеческий мозг обладает чрезвычайно высокой пропускной способностью. Скорость работы мозга во время сновидений в миллиарды раз превышает возможную скорость обработки информации во время бодрствования. Это указывает на то, что во сне в головном мозге действуют особые механизмы психики.

Во сне могут быть сняты все формальные запреты, а значит, апробированы различные ассоциативные связи, воспроизведение которых во время бодрствования затруднено или даже невозможно. Этим объясняется то, что во сне может осуществляться достаточно эффективная проверка гипотез, и могут быть решены важные проблемы, волнующие человека и занимающие все его мысли в бодрствующем состоянии. Так, например, во время сна Д.И. Менделеевым была открыта периодическая система химических элементов, а Ф.А. Кекуле определил пространственную структуру бензольного кольца.

Сны преимущественно носят зрительный характер. У слепых с рождения людей зрительные образы в снах отсутствуют и преобладают осязательные. На характер сновидений оказывает влияние профессиональная деятельность человека. Так, музыканты часто переживают чисто слуховые сновидения. Отмечается зависимость сновидений от уровня интеллекта, утомления, возраста и пола. Как правило, в сновидениях мужчины более агрессивны, в то время как у женщин в сновидениях большее место занимают сексуальные компоненты.

Несмотря на фантастичность и разнообразие мира сновидений в нем нет ничего нового: сновидения – следствие жизненного опыта, отражение ранее происшедших событий – «небывалые комбинации бывалых впечатлений» по И.М. Сеченову. Действуя на спящего человека раздражителями (световыми, звуковыми, температурными, вкусовыми, обонятельными или тактильными) можно повлиять на содержание сновидения. Но это влияние оказывается не таким, каким бы оно было в бодрствующем состоянии. Отображение раздражителей в спящем мозгу настолько искажается, что по ним бывает трудно судить об их качестве.

Любое воздействие может послужить поводом для развертывания целостной картины сновидения, в том числе и сигналы от внутренних органов. Эмоциональная окраска сновидения связана с частотой сердечных сокращений и дыхания, степенью сужения кровеносных сосудов и выраженностью электрической активности кожи в последние минуты быстрого сна перед пробуждением. Сигналы, поступающие в головной мозг от пораженных органов во время сна, могут проявляться в сновидениях, которые, таким образом, как бы «предвещают» заболевание.

Исходя из этого, известный врач-психиатр В.М. Бехтерев (1928) уделял большое внимание диагностическому значению сновидений. Такого же взгляда придерживался другой крупный русский невропатолог М.Н. Аствацатуров, который отмечал, что тревожные сновидения с элементами страха смерти и внезапными пробуждениями могут свидетельствовать о сердечных заболеваниях, при отсутствии в это время каких бы то ни было субъективных жалоб.

В последнее время все большее физиологическое обоснование получают методики искусственного изменения состояния сознания – гипнотизация и медитация , которые с давних времен широко применяются при лечении психических и психосоматических заболеваний, а также в комплексе общеоздоровительных мероприятий.

Гипноз – это сноподобное состояние, которое характеризуется разлитым торможением высших отделов ЦНС, при сохранении раппорта – очага возбуждения в коре больших полушарий, обеспечивающего речевую связь гипнотика с гипнотизером.

Способы гипнотизации подразделяются на физиологические, которые связаны с воздействием на органы чувств физических факторов и психологические – приемы, направленные на словесное внушение сна.

Физические раздражители, действующие на сенсорные системы, могут быть слабыми и продолжительными, или, наоборот, сильными и внезапными. Для этого можно использовать фиксацию взгляда на блестящем предмете или применять сильные вспышки света. Приемом гипнотизации через слуховой анализатор может служить всякий однообразный убаюкивающий звук, но для этой же цели можно использовать внезапные и сильные акустические сигналы. Эффективными приемами гипнотического усыпления являются массаж или продолжительное сжимание пальцев рук. С другой стороны, у истеричных личностей эффективно внезапное надавливание на особые чувствительные области, которые называются гипногенными. Как бы то ни было, конечная цель физиологических способов гипнотизации – формирование в головном мозге очага торможения.

Психологические приемы сводятся к словесному созданию ассоциаций с состоянием сна. Такое словесное внушение сна может быть произведено постепенно с помощью заявлений, что гипнотизируемый чувствует тяжесть век, рук, и ног, ему хочется спать, или же гипнотическое состояние можно вызвать простой повелительной командой – «спать!». Строгое разграничение между физиологическими и психологическими приемами гипнотизации не может быть проведено. Наиболее эффективно сочетание этих способов.

Гипнозу поддается большинство людей. Однако его глубина у разных субъектов существенно различается. Развитию гипнотического состояния способствует большее или меньшее расположение ко сну, умственное и физическое утомление и другие факторы. Эмоциональные переживания, страх за последствия гипнотизации или сильное желание заснуть как можно быстрее, напротив, вредит гипнотизации. Успех гипнотизации зависит от личности гипнотизирующего, его авторитета в глазах гипнотизируемого.

Подверженность гипнозу (гипнабельность) зависит от возраста, пола, функционального состояния, интеллекта гипнотика. Механизм гипноза в целом остается неизвестным. Однако, есть основания полагать, что гипнотическое состояние создается за счет торможения в ЦНС на фоне частично сохраняющихся восходящих активирующих влияний ретикулярной формации.

По мере гипнотизации у человека повышается активность правого полушария и угнетается функция левых отделов мозга. При этом вместо преобладающей в бодрствующем состоянии второй (речевой) сигнальной системы ведущее значение приобретает первая сигнальная система. Отсюда подавление личностной сферы, пассивность, подчинение командам гипнотизера, которые оживляют ассоциации гипнотика независимо от его сознания и воли. Несмотря на отсутствие завершенной теории гипноза, с его помощью успешно излечивается ряд психосоматических заболеваний (неврозы, гипертоническая болезнь, бронхиальная астма, ожирение и др.), особенно на начальных стадиях.

Выделяют три стадии гипноза:

1) сонливость, когда гипнотик может противостоять командам гипнотизера и самопроизвольно открыть глаза,

2) гипнотаксия – легкий сон, когда гипнотик не может открыть глаза и подчиняется тем командам, которые не противоречат его основным личностным установкам,

3) сомнамбулизм – глубокий сон, который характеризуется полной подчиненностью гипнотизеру и амнезией после пробуждения.

Во время третьей стадии гипнотик легко поддается внушению - проникновению в его сознание посторонней идеи, переданной вербально, без участия воли и внимания.

Большинство людей невольно сопротивляется посторонним психическим воздействиям. Повышенной внушаемостью отличаются робкие, доверчивые, впечатлительные, неуверенные в себе люди. Они относительно легко подчиняются указаниям и советам других, даже если эти советы противоречат их собственным убеждениям и интересам. Степень внушаемости может быть повышена действием ситуативных факторов: утомления, стресса, недостатка компетентности, группового давления и других социально-психологических условий. Повышенная внушаемость наблюдается у детей дошкольного возраста, а также у взрослых при различных заболеваниях. Усиление внушаемости в состоянии гипноза обусловлено подавлением воли и отсутствием критического отношения к действительности, что создает наиболее благоприятные условия для проникновения в личностную сферу субъекта посторонних идей, которые воспринимаются им как собственные.

Внушение как лечебный фактор имеет огромное значение в практике врача. Врач в сознании пациента предстает всемогущим человеком, поэтому любое слово может оказывать на пациента гипнотическое воздействие. Неосторожно высказанное замечание в адрес больного может усугубить развитие болезни, и наоборот, внимательное отношение и нужные слова могут облегчить его состояние.

Не менее существенное влияние на психические функции человека оказывает медитация – измененное волевым усилием субъекта, особое состояние психики, которое обеспечивает процесс считывания информации с глубоких структур подсознания и позволяет реализовать предельные возможности сознания как системы внутреннего видения.

Медитация направлена на достижение такого состояния сознания, в котором ничто больше не воспринимается и не оценивается – «пустота, в которой нет уже ни формы, ни звука, ни запаха, ни вкуса, ни предметов… где нет ни знаний, ни незнания». Это достигается путем специальных приемов, обязательными условиями которых являются релаксация и обособленность от внешних событий при поддержании высокого уровня бодрствования. В этом состоянии мозг полностью обращается внутрь себя, и все его ресурсы направляются на восприятие внутренних сигналов. При этом сознание, распространившееся на сферу подсознательного, теряет свою обособленность, поскольку воплощается во всем мыслящем мозге. Это выражается в характерных для медитации ощущениях слияния со всем миром и замедления собственного внутреннего времени.

Медитация обеспечивает глубокий отдых центральной нервной системе. По мере того как нарастает релаксация – от уменьшения мышечного тонуса до глубокого расслабления, биоэлектрическая b-активность головного мозга постепенно переходит к a-волнам, а затем - к d- и t-ритму. Наряду с этим, повышается готовность ЦНС к более тонкому и точному восприятию сенсорных сигналов. Расширение диапазона и эффективности механизмов восприятия соответствует представлению о «расширении» сознания во время медитации. Благодаря увеличению чувствительность нервных центров в головном мозге формируются многочисленные фокусы взаимодействия – основа мыслительной деятельности, возникают новые ассоциативные связи, которые, повышая творческую активность медитирующего, обогащают его интеллектуальную деятельность.

Некоторые люди во время медитации достигают такого уровня управления внутренней жизнью организма, что могут существенно влиять на гомеостаз: замедлять сокращения сердца, снижать или повышать артериальное давление, уменьшать потребление тканями кислорода до 20%, т.е. регулировать функции, которые в обычных условиях не подчиняются сознательному контролю.

Изменения состояния сознания могут возникать под влиянием других факторов: стрессовых и социально-конфликтных ситуаций, продолжительной сенсорной изоляции, при интоксикации, на фоне гипер- или гипотермии, в условиях гипервентиляции легких или, напротив, при длительной задержке дыхания.

В последнее время проявляется особый интерес к тому, какие изменения сознания происходят в последние минуты жизни. Умирающие, которые с помощью реанимации были возвращены к жизни после клинической смерти, сообщают об ощущении пребывания вне собственного тела. Некоторые говорят о длинном туннеле, в котором они перемещались, приближаясь к ослепительному свету. За это время перед ними проходили образы наиболее значительных событий их жизни. Многие утверждали, что, пройдя через туннель, они оказывались в удивительном мире с необычайно яркими красками. Переживания казались настолько необыкновенными, что в первые минуты после оживления больные сожалели о том, что их вырвали из этого «путешествия». Однако большинство признавало, что, пережив это, они начинали еще больше ценить жизнь, хотя и чувствовали себя при этом более подготовленными к смерти.

Хотя природа таких специфических переживаний не известна, это не дает оснований отрицать их реальность. Раскрытие физиологических механизмов этих психических явлений, несомненно, приблизило бы нас к разгадке феномена сознания как одного из самых сложных проявлений интегративной деятельности высокоорганизованного мозга.

ПРАКТИЧЕСКИЕ РАБОТЫ

Работа №1. Самооценка уровня ситуативной и личностной тревожности.

Определенный уровень тревожности – естественная и обязательная особенность активной, деятельной личности. Измерение тревожности как свойства личности особенно важно, так как оно во многом обусловливает поведение субъекта.

Различают личностную и ситуативную тревожность. Личностная тревожность – устойчивая индивидуальная характеристика, отражающая предрасположенность субъекта к тревоге и предполагающая наличие у него тенденции воспринимать множество ситуаций как угрожающих его престижу, самооценке, самоуважению. Ситуативная (реактивная ) тревожность – состояние, которое характеризуется субъективно переживаемыми эмоциями: напряжением, беспокойством, озабоченностью, нервозностью. Это состояние возникает как эмоциональная реакция на стрессовую ситуацию и может быть разным по интенсивности и динамичности.

Ход работы. Для определения уровня реактивной тревожности испытуемому предлагается ознакомиться с рядом утверждений, характеризующих его

Мотивации представляют собой непосредственное побуждение к действию, т.е. внутреннее состояние, стимулирующее и объясняющее различные поведенческие реакции. К. В. Судаков определил мотивации, как "эмоционально окрашенные состояния животных и человека, формирующие поведение, направленное на удовлетворение лежащих в их основе биологических и социальных потребностей" (Нормальная физиология / Под ред. К. В. Судакова. – М.: Медицинское информационное агентство, 1999). В "Словаре физиологических терминов" (М.: Наука, 1987) приводится определение П. В. Симонова: "Мотивация – физиологический механизм активирования хранящихся в памяти следов (энграмм) тех внешних объектов, которые способны удовлетворить имеющуюся у организма потребность, и тех действий, которые способны привести к её удовлетворению".

Можно выделить три важных функции мотивации. Во-первых, мотивация направляет поведение к определённой цели – удовлетворению потребности. Во-вторых, она повышает общий уровень бодрствования, стимулирует человека или животное к активным действиям. И, в-третьих, она согласует между собой отдельные компоненты поведения и определяет их необходимую последовательность.

Мотивации формируются на основе врождённых физиологических механизмов и приобретённого жизненного опыта. Уже новорождённый способен криком или плачем показывать, что он хочет есть, и успокаивается, после того, как его накормят. Питьевой, оборонительные и терморегуляционные рефлексы тоже являются врождёнными, генетически запрограммированными и вместе с пищевыми безусловными рефлексами они позволяют новорождённому удовлетворять важнейшие биологические потребности организма – в противном случае его ожидала бы гибель. Но, если биологические потребности новорождённого помогает удовлетворять мать или другие, заботящиеся о нём люди, то взрослые должны все проблемы решать сами. Путь от младенца до взрослого – это и процесс прибавления новых разнообразных механизмов управления. Они развиваются на основе существующих нервных и эндокринных способов регуляции, гетерохронного, т.е. неодновременного созревания и совершенствования различных структур мозга, отдельных синапсов и медиаторных систем; они связаны с формированием памяти о прежнем опыте успешных или, напротив, безуспешных действий, направленных на удовлетворение потребностей.

Мотивированное поведение нельзя объяснить на основе только рефлекторных механизмов ответа на лишение, например, пищи или воды, на действие чрезмерного тепла или холода. Рефлексы связаны с непосредственным действием конкретного стимула, а мотивация представляет собой комплексную форму поведения, которая одновременно зависит как от внутренних или эндогенных причин, так и от внешних обстоятельств. Кроме того, надо учитывать, что в формировании мотиваций участвуют, наряду с нервными, и эндокринные механизмы управления поведением.

13.2. Кибернетические принципы гомеостатического регулирования

Биологические потребности связаны с сохранением важнейших гомеостатических параметров: если они по какой-либо причине отклонятся от заданного значения, то автоматически срабатывают нервные и эндокринные механизмы регуляции и одновременно изменяется поведение: оно мотивируется на такие действия, которые помогают быстрее восстановить гомеостаз. Регулирование гомеостатических параметров (например, парциального давления кислорода в артериальной крови, осмотического давления крови, уровня сахара в крови, величины артериального давления и т.д.) можно рассмотреть с позиций теории управления – одного из разделов кибернетики, которая изучает информационные процессы в сложных системах. Системой в кибернетике называется совокупность взаимодействующих между собой относительно элементарных структур или процессов, объединённых в целое для выполнения общей функции. Например, в биологических системах, управление необходимо для поддержания оптимального значения того или иного гомеостатического параметра. Если повлияют внешние силы и изменят величину такого параметра, то входящие в систему звенья перестраиваются так, чтобы вернуть ему оптимальное значение (Рис. 13.1).

Если, например, заданное значение средней температуры тела близко к 37°, а внешняя температура (запускающий стимул) начинает повышаться (+) или понижаться (-), то соответствующая информация от наружных терморецепторов заставляет центры температурной регуляции (управляющее устройство) воздействовать на механизмы нервной и эндокринной регуляции, а также на поведение так, чтобы они и в этих условиях помогли сохранить имеющуюся температуру. Если же это не удаётся, то температура тела начнёт увеличиваться или уменьшаться, т. е. заданное значение параметра изменится. Величину отклонения от заданного значения определят внутренние терморецепторы (измерение величины параметра) и оповестят об этом (обратная связь) центры температурной регуляции. После этого активность центров меняется так, чтобы выровнять регулируемый параметр по заданному эталону. По такой же схеме кроме температуры тела регулируются и многие другие гомеостатические параметры, отклонение которых от заданного значения автоматически запускает внутренние механизмы регуляции (1) и в то же время специфически изменяет характер поведения (2).

13.3. Гипоталамус – важнейшая мотивационная структура мозга

В кибернетическом понимании гипоталамус является управляющим устройством, к которому поступает вся необходимая информация о сохранении гомеостатических параметров или их отклонении от заданного значения. На языке физиологических терминов это означает получение афферентных сенсорных сигналов от периферических рецепторов, а также способность центральных рецепторов самих гипоталамических нейронов непосредственно воспринимать изменения состава крови и ликвора.

Эти два источника поступающей в гипоталамус информации стали основой двух физиологических теорий мотиваций: периферической и центральной. В основу периферической теории легли исследования, показывавшие закономерную связь между мотивированным поведением и характером импульсации от определённых периферических рецепторов: сухость во рту, например, связывалась с формированием жажды, а периодические сокращения пустого желудка – с возникновением голода. В середине ХХ века ведущую роль в формировании мотиваций начали отдавать гипоталамическим центрам, которые в то время открывали один за другим. Позже оба подхода естественным путём объединились, поскольку информация от периферических рецепторов попадает, как известно, в гипоталамические центры и специфически изменяет их активность.

В середине 50-х годов ХХ века существовала точка зрения, что роль гипоталамуса в формировании мотиваций сводится лишь к общему сенсорному и моторному возбуждению, но вскоре стали находить специфические мотивационные механизмы голода и насыщения, питьевого и температурного поведения и т.д. Эти находки были получены во время наблюдений за последствиями электрической стимуляции отдельных регионов или ядер гипоталамуса, а также за изменениями поведения экспериментальных животных после электролитического разрушения тех или иных областей с помощью введённых в гипоталамус электродов.

В гипоталамусе имеется обильная сеть кровеносных капилляров, ни одна другая область мозга так густо ими не насыщена. Через стенки этих капилляров способны проходить такие растворённые в крови вещества, которые в других областях мозга никогда не попадут в его ткань из крови (или наоборот) в связи с особенностями строения стенок сосудов и расположением клеток глии, формирующими гематоэнцефалический барьер: в области гипоталамуса этот барьер снижен. Нейроны гипоталамуса имеют специфические рецепторы для связывания некоторых компонентов крови. Так, например, у одних клеток гипоталамуса существуют глюкорецепторы, взаимодействующие с молекулами глюкозы, а у других – рецепторы, связывающие тот или иной гормон.

Академик К. В. Судаков на основе многолетнего опыта исследования механизмов биологических мотиваций сформулировал представление о том, что различные группы гипоталамических нейронов используют для своих обменных процессов только определённые гуморальные факторы, т.е. обладают химической избирательностью. Если их внутренняя потребность в таком веществе не удовлетворяется, они приходят в состоянии возбуждения. Различные группы однородных в своей химической избирательности нейронов образуют разные мотивационные центры гипоталамуса. Специализация нейронов может состоять и в том, что одни из них активируются снижением уровня глюкозы в крови, а другие – повышением, есть нейроны, чувствительные к величине осмотического давления, уровня норадреналина в крови и т.д.

Возбуждение нейронов мотивационных центров происходит постепенно: по мере нарастания метаболической потребности достигается критический уровень их деполяризации и, вследствие этого, нейроны начинают ритмически генерировать потенциалы действия до тех пор, пока потребность не будет удовлетворена (Рис. 13.2).

Это триггерный механизм деятельности, которая происходит периодично: нейроны ритмически разряжаются при возникновении потребности и успокаиваются, когда потребность будет удовлетворена.

Мотивационные центры гипоталамуса взаимодействуют с ретикулярной формацией, активность которой повышает общий уровень бодрствования и этим способствует эффективности действий, направленных на удовлетворение потребности. Гипоталамус имеет двусторонние связи со структурами лимбической системы мозга – именно этим определяется эмоциональная окраска мотивированного поведения. Наконец, у гипоталамуса существуют двусторонние связи с корой больших полушарий, в особенности с лобными долями, необходимыми как для создания двигательных программ, так и для определения эмоциональных аспектов поведения. Если возникает метаболическая потребность, то больше других структур чувствительный к этому гипоталамус активирует все связанные с ним области мозга, выполняя тем самым функцию пейсмекера – водителя ритма их активности. В свою очередь, связанные с гипоталамусом структуры мозга способны тормозить или усиливать его активность. Особая роль в этом отношении принадлежит коре, тормозящие влияния которой могут подавить или отсрочить удовлетворение той или иной потребности: например, многие верующие люди сознательно ограничивают себя в еде во время поста.

Изучение влияния нейротрансмиттеров на нейроны гипоталамуса показало, что разные вещества по-своему изменяют характер поведения. Так, например, нанесение норадреналина на паравентрикулярные ядра гипоталамуса сильно стимулирует аппетит, причём, при возможности выбирать ту или иную пищу, подопытные животные предпочитают продукты с высоким содержанием углеводов. Точно так же действует и самый сильный возбудитель аппетита – нейропептид Y, а ещё один пептид – галанин избирательно повышает потребление жиров.

Некоторые вещества, способные изменять характер поведения, попадают в гипоталамус из крови, проходя через гематоэнцефалический барьер. Так, например, ангиотензин, образующийся в повышенном количестве при уменьшении объёма циркулирующей крови, проникает в гипоталамус и активирует в нём группу чувствительных нейронов, что приводит, в конечном счете, к усиленному потреблению воды. Некоторые пептидные гормоны образуются в двенадцатиперстной кишке и верхнем отделе тонкого кишечника в связи с поступлением туда пищи (например, холецистокинин, бомбезин и т.п.). Они попадают в кровь в очень небольших количествах, однако определённые нейроны гипоталамуса к этому высоко чувствительны: действие таких гормонов ведёт к уменьшению или прекращению приёма пищи. К таким же последствиям приводит и действие гормона поджелудочной железы инсулина, способного медленно проникать из крови в ликвор: в гипоталамусе найдены места связывания инсулина.

Таким образом, гипоталамус, обладающий всей информацией о состоянии внутренней среды организма, способен управлять её гомеостатическими параметрами с помощью нервных и эндокринных механизмов регуляции на основе уже имеющихся, накопленных ранее резервов. Но, кроме того, гипоталамус ещё и побуждает другие области мозга специфически изменить поведение, направить организм на такие действия, которые обеспечат восстановление потраченных ресурсов или их заготовку впрок.

13.4. Лимбическая система мозга

В 1937 году нейроанатом Джеймс Папец (Papez J.) обратил внимание на существование многочисленных связей между структурами мозга, расположенными в виде кольца в области соединения ствола и полушарий, и предложил объединить их в лимбическую систему (лат. limbus – кайма). Кольцо лимбической системы образуют мамиллярные тела, гиппокамп, миндалины и свод, проходящий дугой от гиппокампа к мамиллярным телам и перегородке. Нейроны перегородки образуют несколько пучков аксонов, соединяющих её с мамиллярными телами, миндалинами и гиппокампом – в результате образуется кольцо, по которому может циркулировать возбуждение.

В лимбическую систему принято также включать соседние области древней и старой коры мозга: прилегающие к гиппокампу грушевидные доли и поясные извилины – они занимают медиальную поверхность больших полушарий непосредственно над мозолистым телом и, как пояс, огибают таламус. Лимбические структуры связаны хорошо развитыми проводящими путями с обонятельным мозгом и гипоталамусом (Рис. 13.3).

В частности гипоталамус соединён с гиппокампом и перегородкой волокнами свода, а терминальной полоской (stria terminalis) и вентральным амигдалофугальным путём – c миндалиной. Через гипоталамус лимбическая система взаимодействует со средним мозгом, через гипоталамус и передние ядра таламуса она связана с лобной корой. Гиппокамп и миндалины, расположенные в височных долях, непосредственно сообщаются с ассоциативными областями коры.

Папец высказал предположение о реципрокных отношениях гипоталамуса и кортикальных центров познания и эмоций, он считал, что, получив информацию от кольца лимбических структур, гипоталамус начинает затем взаимодействовать с корой через поясную извилину и передние ядра таламуса. Эти представления существенно пересмотрел и развил американский физиолог Пол Мак-Лин (McLean P. D.), который обосновал представление о важной роли "висцерального мозга" для регуляции эмоционального поведения и коррекции внешних и внутренних сигналов. Он также предложил модель иерархического деления мозга на три отдела в соответствии с этапами его эволюционного развития (Рис. 13.4): 1) древний мозг рептилий (ствол, промежуточный мозг и базальные ганглии); 2) старый мозг млекопитающих (структуры лимбической системы) и 3) новый мозг млекопитающих (кора больших полушарий).

Функция древнего мозга рептилий, по мнению Мак-Лина, заключается в контроле врождённых поведенческих актов; такой мозг недостаточно пластичен и обеспечивает выживание только при постоянных условиях среды. Древний мозг млекопитающих ("висцеральный мозг") формирует эмоции, увеличивает объём памяти и даёт возможность возникновения простых форм поведения. Новый мозг прибавляет возможность произвольного управления эмоциями, прогнозирования поведения и т.п. Мак-Лин рекомендовал не забывать, что в каждом человеке присутствует мозг лошади и крокодила, и с этим обстоятельством порой приходится считаться.

Изучение функций лимбической системы проводилось путём наблюдения за последствиями удаления или разрушения отдельных её структур (например, миндалин, гиппокампа), электрической стимуляции этих структур, регистрации их электрической активности (с помощью вживлённых электродов) при различных формах поведения. Использование методов нейрохимии и нейрофармакологии позволило обнаружить различные нейромедиаторы и рецепторы у нейронов, входящих в состав лимбической системы.

Применение метода самораздражения (См. 13.5) позволило обнаружить такие структуры мозга, электрическая стимуляция которых вызывает приятные или, напротив, неприятные ощущения. К позитивным эмоциогенным зонам относятся латеральный и перивентрикулярный гипоталамус, перегородка, покрышка среднего мозга: здесь сосредоточены тела или аксоны моноаминэргических нейронов, использующих в качестве медиаторов дофамин или норадреналин. Негативных эмоциогенных зон в мозгу гораздо меньше, чем позитивных, а многие структуры (и в том числе, по-видимому, гиппокамп) нейтральны – их стимуляция не сопровождается приятным или неприятным ощущением (в мозгу крысы около 60% структур нейтральны, раздражение 35% исследованных областей мозга вызывает удовольствие, а стимуляция остальных 5% – страдание). В мозгу человека также оказалось больше областей, раздражение которых вызывает приятные ощущения или удовольствие.

13.5. Роль мезолимбической системы в формировании мотиваций

Классическая теория мотиваций объясняла их возникновение и прекращение по следующей схеме: лишение еды или питья, температурного комфорта или полового партнёра (для такого рода ограничений часто используется термин депривация) приводит к мотивированному поведению, в результате которого существующая потребность удовлетворяется, а как только будет достигнута эта цель, мотивация просто утратит смысл. В начале 50-х годов ХХ столетия Дж. Олдс (Olds J.) выполнявший диссертацию под руководством профессора П. Милнера (Milner P.), исследовал поведение крыс со вживлёнными в мозг стимулирующими электродами. Обычно крысы, подвергнувшиеся неприятному электрическому разряду, не возвращались в то место, где на них действовал ток. Но как-то одна из подопытных крыс стала регулярно к нему возвращаться. Тогда Олдс, посчитав что у этой крысы низкий порог чувствительности, увеличил силу раздражителя, но добился только того, что крыса ещё охотнее стала возвращаться к месту электрической стимуляции. При вскрытии животного было установлено, что стимулирующий электрод оказался в заднем отделе гипоталамуса, что первоначально не планировалось в экспериментах Олдса.

Тогда Олдс и Милнер вживили электроды в эту же область мозга другим крысам, а в клетке, куда их помещали, сделали педаль, при нажатии на которую замыкалась электрическая цепь, и мозг немедленно подвергался действию тока (Рис.13.5).

Это нововведение привело к открытию феномена самораздражения: крысы непрерывно нажимали на педаль (отдельные животные делали это несколько тысяч раз на протяжении одного лишь часа) и явно предпочитали такое занятие даже приёму пищи, несмотря на предшествующее голодание в течение суток. Так возникло представление о "центрах удовольствия (поощрения)".

Дальнейшими исследованиями такие центры были найдены и в других областях мозга, а наряду с ними удалось обнаружить структуры, стимуляции которых животные всячески стремились избежать – эти регионы представляют собой "центры избегания (наказания)". Известный исследователь мозга Г.Мэгун (Magoun H. W.) задал в связи с этими экспериментами хороший риторический вопрос: "Не находится ли рай и ад в мозгу животного?" Вскоре этот вопрос стал уместным и применительно к мозгу человека, в котором также были найдены как центры удовольствия, так и области, раздражение которых сопровождалось неприятными ощущениями. Всё это позволило рассматривать мотивации с гедонистической точки зрения (от греч. hedone – удовольствие), согласно которой поведение мотивируется не только неприятными ощущениями, побуждающими к определённым действиям, но и получением удовольствия от результата таких действий. В процессе приобретения жизненного опыта образуются следы памяти о совпадении определённых действий с исчезновением неприятных ощущений и получением удовольствия, и эта память начинает использоваться в дальнейшем.

В настоящее время известно, что переживание удовольствия связано с активацией областей мозга, которые иннервирует мезолимбическая система, образованная дофаминэргическими нейронами (Рис. 13.6).

Их тела находятся в области вентральной покрышки среднего мозга, а аксоны оканчиваются в префронтальной и лимбической коре, перегородке, обонятельной луковице, миндалинах и прилегающем ядре (nucleus accumbens), расположенном кпереди от полосатого тела. Экспериментальное исследование этих областей мозга в последние годы проводилось с помощью введённых в них микроканюль (тончайших трубочек), через которые удаётся получать образцы внеклеточной жидкости для исследования, а также медленно вводить через них различные фармакологические вещества. Такие исследования позволили обнаружить, на какой стадии мотивированного поведения из окончаний мезолимбических нейронов выделяется больше всего дофамина: во время мотивированного поведения, направленного на удовлетворение потребности, или при достижении результата?

В одном из опытов голодных крыс помещали в одну из половин разделённой перегородкой клетки, а на другой половине находилась привлекательная для них еда, которая была для животных недоступна. Через 20 минут перегородку убирали и тогда крысы могли есть. Этот опыт повторяли на протяжении двух недель, чтобы у крыс образовался определённый поведенческий опыт, а затем определяли уровень дофамина в добытой через микроканюлю внеклеточной жидкости прилегающего ядра (n. accumbens). Обнаружилось, что во время ожидания корма он не выше среднего значения, но после еды дофамин выделяется в заметно большем количестве. В другом эксперименте, выполненном по такой же схеме, в одну половину клетки помещали самца крысы, а в другую – самку, находящуюся в состоянии течки. И здесь было найдено, что выделение дофамина связано не с приближением полового партнёра, а с последующим спариванием.

После избирательного повреждения нейронов мезолимбической системы специфическим токсином (6-гидрооксидофамин) на одной стороне мозга подопытные животные перестают пользоваться вживлёнными с этой стороны электродами для самораздражения, но продолжают раздражать у себя центры удовольствия на другой стороне мозга: при этом в прилегающем ядре повышается концентрация дофамина. Если вводить через микроканюлю антагонисты дофамина, то животные либо прекращают, либо уменьшают самораздражение. Таким образом, дофаминэргические нейроны обеспечивают "награду" за совершённые действия (можно сказать, что мозг сам себя награждает) и такая деятельность становится, по мере приобретения опыта, важным механизмом активации поведения, усилением средств поиска.

Нельзя не отметить, что ряд наркотических веществ, от действия которых человек или животное может попасть в зависимость, усиливают выделение дофамина или препятствуют его нормальному расщеплению, поддерживая тем самым, повышенную концентрацию. Здесь складывается ситуация, по сути напоминающая действия крысы, непрерывно нажимающей на педаль для получения удовольствия.

13.6. Физиологические механизмы боли

При механическом, термическом или химическом повреждении тканей организма возбуждаются особые рецепторы с высоким порогом чувствительности. Это болевые рецепторы или ноцицепторы, принадлежащие афферентным нейронам, тела которых располагаются в спинальных ганглиях. В составе задних корешков спинного мозга возбуждение поступает в спинной мозг, где в задних рогах происходит первое переключение сигналов в ноцицептивной системе. Нейроны задних рогов спинного мозга передают полученную информацию дальше с помощью своих аксонов, которые переходят через переднюю серую спайку на противоположную сторону и двумя-тремя сегментами выше входят в состав переднебокового канатика, поднимающегося к таламусу и образующего таким образом спиноталамический тракт. Часть восходящих в переднебоковом канатике аксонов направляется к нейронам ретикулярной формации – это спиноретикулярный тракт (Рис. 13.7).

Спиноталамический тракт позволяет точно определять место действия болевого стимула, поскольку он заканчивается на тех же ядрах таламуса, где переключаются проводники тактильной и проприоцептивной чувствительности. Конвергенция тактильных и болевых сигналов на одних и тех же нейронах таламуса обеспечивает их одновременную проекцию преимущественно на первичную соматосенсорную кору.

Спиноретикулярный тракт заканчивается диффузно в нескольких областях ретикулярной формации ствола мозга. Получающие сигналы нейроны ретикулярной формации связаны с медиальными ядрами таламуса. Нейроны этих ядер таламуса не имеют определённого представительства в коре, их отростки веерообразно распределены по разным её регионам. Считают, что переданная по спиноретикулярному пути информация от болевых рецепторов играет роль сигнала общей тревоги, оказывает общее возбуждающее действие.

Относительно недавно методом позитронно-эмиссионной томографии было установлено, что при болевом раздражении всегда повышается активность передней части поясной извилины, которая является компонентом лимбической системы мозга. Эта активность связана с поступлением информации по спиноретикулярному пути к медиальному таламусу, а от него – к поясной извилине. Результатом активации лимбической системы является эмоциональная реакция на боль. Одновременно с этим ощущение боли сопровождается выраженными вегетативными реакциями. Их появление можно связать с активностью ретикулярной формации, в которой содержатся многие важные центры вегетативной регуляции.

На примере изменяющегося болевого восприятия интересно наблюдать роль нисходящего торможения. Многочисленные ноцицепторы (чувствительные окончания болевых нейронов) мультимодальны, т.е. их можно возбудить механическим воздействием (укол, щипок), термическим, химическим (если на них действуют освобождающиеся при повреждении клеток вещества типа брадикинина, серотонина, гистамина, простагландинов и т.п.), однако порог их чувствительности довольно высок. Чувствительные нейроны передают возбуждение на нейроны задних рогов спинного мозга, по-видимому, с помощью нескольких нейротрансмиттеров (чаще других упоминаются вещество Р, холецистокинин и соматостатин); возможно, что некоторые из них выполняют роль нейромодуляторов.

К этим переключательным нейронам задних рогов спускаются из головного мозга нисходящие тормозные пути, с помощью которых передача болевых импульсов может быть прервана. Нисходящие пути начинаются от нейронов головного мозга, группирующихся вокруг водопровода и в большом ядре шва: они синтезируют энкефалины, уменьшающие образование вещества Р в задних рогах. В других нисходящих путях в качестве медиаторов используются биогенные амины, основной такой путь начинается в ядрах голубого пятна, где синтезируется норадреналин. Предполагают, что он взаимодействует в спинном мозгу с альфа-адренорецепторами, а вследствие этого активируются подавляющие передачу болевой чувствительности механизмы.

Высокая плотность опиатных рецепторов обнаружена в лимбической системе и медиальной части таламуса. С этим интересно сопоставить многочисленные примеры временного снижения или даже утраты болевой чувствительности при определённых эмоциональных состояниях. У женщины во время родов, у солдата во время боя, у религиозного фанатика во время самоистязания болевой порог резко повышается, что можно объяснить как торможением передачи болевых сигналов, так и изменением характера эмоциональных реакций в ответ на болевые стимулы

13.7. Роль миндалин в образовании мотиваций

Если гипоталамус является важнейшей мотивирующей структурой мозга, активирующейся при изменении постоянства внутренней среды, то на внешние стимулы, вызывающие мотивацию или же изменяющие уже мотивированное поведение, раньше гипоталамуса откликаются нейроны миндалевидных ядер или миндалин мозга, которые относятся к лимбической системе и находятся в височных долях больших полушарий. Электрическое раздражение миндалин у людей чаще всего вызывает чувство страха и тревоги, двустороннее удаление миндалин у экспериментальных животных по-видимому лишает их чувства страха. Каков же механизм формирования такой мотивации? Поиск ответа на этот вопрос побудил к исследованию афферентных и эфферентных связей миндалин.

Есть два важных источника афферентной информации для миндалин: сенсорные ядра таламуса и кора, преимущественно вторичные слуховые области и полимодальные ассоциативные поля (Рис. 13.8).

При действии внешних стимулов сенсорная информация раньше поступает от таламуса и вызывает примитивную реакцию, на фоне которой приходит информация, уже переработанная в коре. Оба афферентных потока направляются к базолатеральным ядрам миндалин, где пришедшие сигналы перерабатываются и передаются нейронам центрального ядра миндалин. От клеток центрального ядра начинаются эфферентные пути миндалин, которые направляются к латеральному гипоталамусу и стволу мозга. При возникновении страха активация миндалин приводит к последующему быстрому повышению частоты сокращений сердца и артериального давления, учащению дыхания, выделению гормонов и другим проявлениям симпатоадреналовой реакции и стресса. Такими же последствиями сопровождается раздражение центрального ядра миндалины электрическим током, тогда как его разрушение приводит к исчезновению вегетативных реакций в ответ на действие стимулов, обычно вызывающих страх.

Помимо этого существует эфферентный путь от миндалин к коре, в особенности к орбитофронтальной области и поясной извилине, этот путь важен для осознания переживаемых ощущений. Кроме того, ядра миндалин имеют реципрокные соединения с гиппокампом, а также получают афферентную проекцию от гипоталамуса, хотя она и уступает по мощности эфферентным влияниям миндалин на гипоталамус. И ещё необходимо отметить связь миндалин с мезолимбической системой, прежде всего с прилегающим ядром (n. accumbens).

У кроликов можно выработать условный рефлекс на нейтральный звуковой стимул, подкрепляя его болевым действием электрического тока. Болевое раздражение всегда сопровождается повышением частоты сокращений сердца, артериального давления, учащением дыхания и т.п. Когда образуется условный рефлекс, такая же реакция наблюдается и на прежде нейтральный звуковой раздражитель, который начинает вызывать у животного состояние страха. Если теперь удалить или разрушить миндалины, либо ввести в них специфические блокаторы синаптической передачи – реакция страха исчезнет. Таким образом, не только врождённые, но и приобретённые мотивации страха связаны с обязательным участием миндалин.

Роль миндалин не сводится только к мотивации страха. Хотя при их повреждении не исчезают совсем мотивации голода или жажды, но в пищевом и питьевом поведении наступают заметные перемены. Подопытные животные перестают отличать предпочитаемую раньше вкусную пищу от невкусной и постоянно берут в рот даже несъедобные предметы. У них пропадает врождённая или выработанная до операции разборчивость в питье, и, например, подопытные крысы начинают пить растворы с неприятным для нормальных животных запахом. У них изменяется половое поведение: животные становятся гиперсексуальными и готовы спариваться даже с представителями другого вида. Таким образом, значение миндалин становится особенно заметным в тех случаях, когда для формирования мотивированного поведения одновременно требуется учесть существование нескольких внешних факторов.

13.8. Гомеостатическое и поведенческое регулирование температуры тела

Жизнедеятельность многих клеток человеческого организма, процесс их деления и развития можно наблюдать вне организма (in vitro), если, конечно, обеспечить им необходимые условия существования. Одним из обязательных условий является поддержание постоянной температуры – 37° С, поскольку большая или меньшая температура изменит скорость и характер обменных процессов и может оказаться губительной для клеток. При выращивании клеток вне организма постоянную температуру им обеспечивает термостат, в самом организме терморегуляцию осуществляют специальные механизмы гомеостатического регулирования. Кроме того, холод или жара побуждают человека к действиям, направленным на достижение температурного комфорта. Комфортно он ощущает себя в термонейтральной зоне внешней среды – примерно 27-28° С для обнажённого человека (здесь уместно напомнить о его тропическом происхождении), с помощью одежды ощущение комфорта может быть достигнуто при меньшей температуре.

Одежда препятствует выведению тепла из организма, которое отдаётся прилегающему к поверхности тела слою воздуха (теплопроведение или конвекция), излучается к предметам, нагретым меньше, чем температура поверхности тела (32-33° С), а также выделяется при испарении пота с поверхности тела. В нагретом воздухе и в окружении горячих предметов путём конвекции и теплоизлучения в организм поступает дополнительное тепло и тогда единственным способом его выведения становится потоотделение, да ещё некоторое количество тепла уходит из организма при дыхании в связи с испарением водяных паров, содержащихся в выдыхаемом воздухе.

Тепло постоянно образуется в организме в ходе обменных процессов (первичная теплота), кроме того, при совершении любой работы расщепляются обеспечивающие её энергией ранее синтезированные вещества, что также сопровождается образованием тепла (вторичная теплота). Особенно много тепла образуется в мышцах, где даже в условиях покоя поддерживается мышечный тонус, а на его поддержание расходуется энергия.

Постоянная средняя температура тела может сохраняться в том случае, когда теплоотдача и теплопродукция уравновешены. Но непостоянная температура среды то и дело изменяет теплоотдачу, а интенсивность обмена и разный объём выполняемой работы меняют теплопродукцию, отчего баланс, казалось бы, должен всё время нарушаться, однако этого не происходит благодаря эффективно действующим механизмам терморегуляции.

Центр терморегуляции находится в гипоталамусе, к которому поступает афферентная информация от холодовых и тепловых терморецепторов кожи, внутренних органов и спинного мозга. Помимо периферических терморецепторов существуют центральные, они находятся в переднем гипоталамусе, в его преоптической области. Это тепловые и холодовые термочувствительные нейроны, которые изменяют частоту своих разрядов в ответ на незначительное повышение или понижение температуры крови, протекающей через мозг. Передний отдел гипоталамуса – это термоафферентная область, здесь происходит суммация всех температурных сигналов. Регулируемым параметром оказывается средняя температура близкая к 37° С, что является заданным, установочным значением, его внутренним эталонным входом (англ. set point).

При отклонении средней температуры от заданного значения гипоталамус корректирует вегетативную и эндокринную регуляцию, а также реакции скелетных мышц, чтобы одновременными изменениями теплоотдачи и теплопродукции выровнять отклонение. Когда из-за повышения внешней температуры начинает нарастать средняя температура тела, происходит рефлекторное расширение поверхностных сосудов при одновременном сужении сосудов внутренних органов: в результате кровоток через кожу может увеличиться в несколько раз и повысить её температуру (румянец после бани обусловлен именно этим механизмом). Но, если температура среды окажется выше, чем на поверхности кожи, вывести тепло путём конвекции или теплоизлучения невозможно и единственным остающимся способом освобождения от излишков тепла становится выделение пота. Это тоже рефлекторный и управляемый гипоталамусом механизм, который реализуется с помощью холинэргических симпатических волокон, иннервирующих потовые железы. При длительном действии жары постепенно понижается интенсивность обменных процессов и уменьшается мышечный тонус. Уменьшение теплопродукции облегчает приспособление к жаре.

При действии холода происходит перераспределение кровотока от поверхностных сосудов к сосудам внутренних органов – это снижает температуру поверхности и уменьшает теплоотдаду. Наряду с этим повышается тонус мышц и может возникнуть непроизвольная мышечная дрожь, что сопровождается повышенным образованием тепла. При длительном действии холода увеличивается секреция гормонов (особенно тироксина в щитовидной железе), стимулирующих освобождение энергии и образование тепла. Реакции, направленные на сохранение тепла в организме, контролируют задние отделы гипоталамуса, которые, в отличие от переднего гипоталамуса, не имеют собственных термочувствительных нейронов, а играют роль эффекторного отдела.

Одна лишь гомеостатическая терморегуляция не может обеспечить сохранение средней температуры тела на заданном уровне. При большом диапазоне изменений температуры среды эта задача решается и с помощью поведенческой терморегуляции. Стремление к температурному комфорту заставляет искать и находить нужные условия обитания. Необходимым для этого действиям можно обучаться, что, например, обнаруживается в эксперименте с крысами, которые нажатием кнопки могли направлять в клетку холодный воздух и делали это при каждом повышении наружной температуры, но не прикасались к кнопке, если температура воздуха была равной 22° С. Человек, как известно, решает проблемы терморегуляции с помощью соответствующей одежды, отопления помещения или кондиционирования воздуха и, на основе своего опыта, стремится предупредить наступление субъективно неприятных ощущений перегревания или переохлаждения. Впрочем, постоянная жизнь в температурном комфорте ведёт к уменьшению эффективности физиологических механизмов терморегуляции и увеличивает риск простуды. Этому можно противопоставить хорошо известные средства закаливания, обеспечивающие регулярную тренировку физиологических механизмов терморегуляции.

13.9. Механизмы регуляции пищевого поведения

13.9.1. Поступление и усвоение пищи

Пища служит единственным источником энергетических и пластических, т.е. строительных ресурсов для организма. Она механически измельчается во рту, а затем расщепляется под действием ферментов желудка и кишечника на вещества, способные оттуда всасываться в кровь. Из множества самых разнообразных углеводов, жиров и белков растительного или животного происхождения получаются сравнительно простые молекулы: углеводы расщепляются до моносахаров (прежде всего это глюкоза), жиры – до жирных кислот, белки – до аминокислот. Всасывание таких веществ из кишечника в кровеносные капилляры приводит к временному повышению их концентрации в крови, которая сравнительно быстро снижается до обычного постоянного уровня по мере использования и резервирования поступивших продуктов клетками. При повышении в крови уровня сахара увеличивается секреция инсулина. Этот гормон играет важную роль в усвоении поступивших продуктов: он способствует транспорту глюкозы и аминокислот из крови в клетки печени и скелетных мышц и активирует там ферменты, необходимые для синтеза гликогена из глюкозы и белков из аминокислот. Гликоген прежде называли животным крахмалом, его сложная молекула является углеводным запасом на "чёрный день", когда не удастся добыть пищу. Если запас гликогена создан, а глюкоза продолжает поступать с пищей, инсулин стимулирует образование из неё жирных кислот, которые из печени поступают в жировую ткань – так создаётся стратегический запас энергии. В определённом смысле это выгодно, поскольку калорическая ценность жира примерно вдвое выше по сравнению с углеводами, а, кроме того, жир, в отличие от гликогена, не связывает воду и потому создание жирового запаса не требует накопления ещё и большой массы воды.

Как только повышенная приёмом пищи концентрация в крови глюкозы, аминокислот и жирных кислот постепенно понизится и достигнет заданного уровня, возникает новая задача гомеостатического регулирования. Она связана с тем, что работающие клетки забирают из крови нужные себе вещества по потребности, причём многие клетки, например нервные или миоциты сердечной мышцы, могут это делать и без инсулина (что и понятно, поскольку они никогда не создают запасов). Кроме того, многие гормоны вынуждают клетки расставаться с энергетическими запасами, стимулируя в них расщепление гликогена и образование глюкозы. Такие гормоны называют контринсулярными, к ним относятся глюкагон, соматотропин, АКТГ, катехоламины, кортизол. Свою лепту вносит и нервная система: если влияние парасимпатических нервов способствовало расщеплению пищи в желудке и кишечнике, а также выделению инсулина (то есть созданию запаса энергии), то повышенная активность симпатических нервов увеличивает расход энергии и повышает уровень сахара в крови.

На первый взгляд регуляция пищевого поведения представляется довольно простой: как только накопленные запасы будут истрачены и уровень питательных веществ в крови начнёт снижаться, наступает время принимать пищу, а когда заданное значение питательных веществ восстановится – трапезу надо закончить. Остаётся, впрочем, неясным вопрос о том, как регулировать количество запасаемого жира, который в норме обеспечивает около 85% энергетических ресурсов (в то время как белки мышц – 14,5%, а гликоген печени – лишь 0,5%)? Если запас жира начнёт расти, то станет увеличиваться и масса тела, но многие люди долгие годы сохраняют постоянный вес – как регулируется его заданное значение? Быть может, существуют разные классы сигналов: одни из них, кратковременные, для управления однократным приёмом пищи – от голода до сытости, а другие, долговременные, – для сохранения заданного значения веса тела? Многое остаётся непонятным до настоящего времени.

13.9.2. Открытие центров голода и насыщения в гипоталамусе

В 1940 году было обнаружено (Hetherington A. W., Ranson S. W.), что после электролитического разрушения (т.е. с помощью введённых электродов, через которые пропускается ток) вентромедиальной области гипоталамуса у экспериментальных животных сразу после операции возникает гиперфагия (т.е. неумеренное потребление пищи), которая быстро приводит к ожирению (Рис. 13.9).

Со временем вес перестаёт расти, и одновременно крысы уменьшают потребление пищи, но стоит им немного поголодать и похудеть, как они снова увеличивают приём пищи и опять набирают свой большой вес. Его можно и ещё увеличить путём принудительного кормления животных через зонд, а после отмены такого кормления, они станут есть меньше и их вес уменьшится, но не до нормы, а до набранного после операции значения. Иными словами подопытные крысы "защищают" свой увеличенный вес подобно нормальным животным, хотя заданное значение этого веса стало иным.

В 1951 году Ананд и Бробек (Anand B. K., Brobeck J. R.) обнаружили, что после разрушения латерального гипоталамуса у крыс развивается афагия (отказ от пищи) и без принудительного кормления они могут погибнуть от голода в окружении самой вкусной еды. Если выходить их после операции путём принудительного кормления через зонд, то спустя некоторое время они начинают есть самостоятельно, хотя и меньше, чем нормальные крысы.

На основе этих открытий сложилось представление о механизме регуляции пищевого поведения двумя гипоталамическими центрами: вентромедиальный гипоталамус стал рассматриваться в качестве центра насыщения (поскольку его разрушение приводит к гиперфагии), а латеральный гипоталамус был объявлен центром голода (после его разрушения наблюдается отказ от пищи). Это представление на какое-то время оттеснило на задний план прежний взгляд на пищевое поведение, отводящий главное значение в формировании чувства голода сокращениям пустого желудка и соответствующей афферентной импульсацией от периферических рецепторов. Отказу от гипотезы периферической активации приёма пищи способствовал и хорошо известный факт регулярного возникновения чувства голода у людей, перенесших резекцию желудка, т.е. его оперативное удаление.

Сложившаяся в 40-50-х годах модель пищевого поведения объясняла чувство голода понижением уровня сахара в крови, а чувство сытости – его повышением во время еды выше заданного значения (глюкостатический механизм). Тогда же возникла гипотеза регулирования заданного значения количества жира в организме, при уменьшении или увеличении которого должно было соответственно увеличиваться или уменьшаться общее количество потребляемой пищи (липостатический механизм). В соответствии с этими представлениями понижение и повышение уровня сахара можно было считать кратковременными сигналами, действующими от начала до окончания еды, а изменения количества жира следовало рассматривать в качестве сигналов для долговременной регуляции. Если связать с этим существование специальных центров голода и насыщения в гипоталамусе, то объяснить возникновение пищевой мотивации можно очень легко. К сожалению, всё оказалось намного сложней.

13.9.3. Новые данные о центрах голода и насыщения

Постепенно выяснилось, что вентромедиальный гипоталамус вряд ли можно представлять только центром насыщения в традиционном понимании, а механизм гиперфагии, развивающейся после его разрушения, гораздо сложнее, чем казалось поначалу. Выяснилось, что разрушение вентромедиального гипоталамуса обычно сопровождается повышенной секрецией инсулина, который собственно и стимулирует образование жира из глюкозы. Это приводит к понижению уровня сахара в крови, животные начинают есть, но инсулин и этот, вновь поступивший сахар превращает в жир. Оказалось, что высокий уровень инсулина связан со стимуляцией поджелудочной железы блуждающим нервом: если перерезать веточку этого нерва, идущую к железе, то гиперфагия, возникающая после разрушения вентромедиального гипоталамуса, исчезнет, а ожирение не возникнет.

Кроме того, было установлено, что при разрушении вентромедиального гипоталамуса традиционно принятым способом повреждается ещё и большой пучок идущих к нему норадренэргических волокон, тела которых расположены в паравентрикулярных ядрах гипоталамуса. Если же повредить только эти ядра или норадренэргические волокна, направляющиеся к вентромедиальному гипоталамусу, то тоже возникнет гиперфагия и ожирение: выходит, что центром насыщения являются и эти структуры? Микроинъекция в паравентрикулярные ядра различных нейротрансмиттеров (норадреналин, ГАМК, нейропептид Y, галанин, опиоидные пептиды) стимулирует последующее потребление пищи, причём одни трансмиттеры склоняют животное к пище, богатой углеводами, а другие – жирами. В связи с этим можно предположить, что различные вещества ослабляют сигнал насыщения либо углеводами, либо жирами.

Не всё оказалось просто и с центром голода в латеральном гипоталамусе. При его разрушении, как правило, повреждаются проходящие поблизости чувствительные волокна тройничного нерва, доставляющие информацию ото рта и лица, а в настоящее время известно, что одна лишь перерезка волокон этого нерва ведёт к нарушениям пищевого поведения у крыс. В ряде случаев при разрушении латерального гипоталамуса повреждали и окружающие структуры базального переднего мозга и вентральную часть бледного шара, а такие нарушения сами по себе приводят к изменению пищевого поведения, которое выражается, например, в появлении отвращения к привлекательному корму, в частности к сахару. Кроме того, надо учесть и почти неизбежное повреждение дофаминэргических волокон, принадлежащих мезолимбической системе, а они, как известно, имеют отношение к получению удовольствия от принимаемой пищи. Можно говорить и о том, что разрушение латерального гипоталамуса приводит не только к афагии, но и к адипсии (прекращению питья), и к целому спектру моторных нарушений и общему дефициту реакций.

Какова же во всём этом роль самих нейронов латерального гипоталамуса? На этот вопрос, кажется, удалось ответить, когда их начали разрушать химическим способом: локальной инъекцией веществ, избирательно повреждающих только тела нейронов и не действующих на соседние волокна. Оказалось, что и в этом случае у животных развивается афагия. Дальнейшие исследования позволили обнаружить в латеральном гипоталамусе нейроны, которые активируются вкусом новой пищи, но утрачивают активность при её многократном приёме. Нейроны ещё одной разновидности возбуждаются при одном лишь виде пищи, но со временем начинают реагировать и на нейтральные стимулы, если они постоянно сопровождают еду. Это указывает на участие таких нейронов в формировании долговременной памяти, лежащей в основе образования условных рефлексов.

13.9.4. Факторы, определяющие пищевое поведение

Если попытаться суммировать результаты многочисленных и многолетних исследований вопроса о том, чем же активируется центр голода, то следует учесть все известные сигналы, на которые он может реагировать (Рис. 13.10).

Это и прямое действие сниженного уровня сахара на нейроны латерального гипоталамуса, и поступающая к ним афферентная информация от периферических глюкорецепторов, обнаруженных в печени, желудке и тонком кишечнике. Это и афферентные сигналы от механорецепторов пустого желудка. Но это и влияния на гипоталамус других структур мозга, активированных множеством факторов, так или иначе, связанных с приёмом пищи (особый вкус, запах, внешний вид, сервировка стола, привычное время, наличие компании и т.д.). Мы ещё вернёмся к этому вопросу при обсуждении долговременной регуляции пищевого поведения липостатическим механизмом.

Что приводит к активации центра насыщения? Во-первых, жевание и глотание пищи – информация об этом поступает от вкусовых и температурных рецепторов рта, от мышечных механорецепторов. Даже при мнимом кормлении, когда проглатываемая пища не попадает в желудок (что происходит после оперативного выведения пищевода наружу), животные не едят беспрерывно, если им предоставлена возможность брать пищу без ограничений. Во-вторых, растяжение пищей желудка и соответствующая стимуляция механорецепторов. В-третьих, действие образующихся при расщеплении пищи продуктов на хеморецепторы, находящиеся в тонком кишечнике. В-четвёртых, повышение уровня сахара в крови, оказывающее прямое влияние на нейроны гипоталамуса. В-пятых, попадающие в кровь местные гормоны желудочно-кишечного тракта, такие, как холецистокинин, бомбезин, соматостатин и т.п.: известно, что их введение голодным крысам уменьшает потребление пищи.

Однако, несмотря на существование такого количества ограничителей приёма пищи, немногие люди способны отказаться от предложенного высококалорийного лакомства, даже если они совершенно не испытывают голода. Так поступают не только люди: в одном из экспериментов крысам сразу после обычного кормления, когда животные насыщались и прекращали есть корм, давали хлеб или шоколад – от этих продуктов крысы не отказывались. Опыт продолжался 120 дней, в течение которых подопытные крысы потребляли примерно на 84% больше калорий, чем при обычном питании. В результате за время эксперимента их вес увеличился на 49%. В развитых странах процент людей, имеющих избыточный вес, очень высок, в США, например, среди взрослых излишний вес имеет каждый третий, а около 12% населения просто страдают от ожирения. Как это увязывается с представлением о заданном значении веса и липостатическом механизме его регуляции?

В 1994 году было обнаружено, что при увеличенном образовании жира в жировой ткани образуется лептин – гормон, уменьшающий активность центра голода в латеральном гипоталамусе и таким путём снижающий потребление пищи. Количество образующегося лептина регулируется с помощью обратной связи: если вводить его в организм, то жировая ткань уменьшит образование собственного гормона. Тогда возникло предположение, что ожирение может быть следствием дефектов системы лептиновой регуляции, связанных с нарушениями образования лептина или снижением чувствительности к нему нейронов гипоталамуса. Однако проверка этой гипотезы показала, что лептиновая система у тучных людей не нарушена.

А как влияет изобилие доступной пищи на образование лептина? В одном из экспериментов лептин вводили двум группам крыс, отличавшихся характером питания в течение трёх дней до введения гормона. Крысам одной группы давали столько еды, сколько они могли съесть, крысы второй группы получали половину от этого количества, т.е. оказывались на полуголодном пайке. Выяснилось, что введение лептина полуголодным крысам не влияет на образование гормона в жировой ткани: он продолжает там вырабатываться, а значит, их лептиновая система не зависит от внешних воздействий, а их аппетит не повышается. При пищевом изобилии крысы реагируют на введение лептина понижением образования собственного гормона. Их лептиновая система становится чувствительной к внешним факторам, и соответственно их аппетит поддаётся стимулированию. Другими словами, у тощих крыс аппетит оказывается меньшим по сравнению с толстыми, а это означает, что лептиновая система успевает приспособиться к новым условиям всего за три дня переедания.

В силу каких причин такая перестройка может произойти у человека? Ответить на этот вопрос можно, пожалуй, с помощью всего лишь одной цитаты: "Блины были такие великолепные, что выразить вам не могу, милостивый государь: пухленькие, рыхленькие, румяненькие. Возьмёшь один, чёрт его знает, обмакнёшь его в горячее масло, съешь – другой сам в рот лезет. Деталями, орнаментами и комментариями были: сметана, свежая икра, сёмга, тёртый сыр. Вин и водок целое море. После блинов осетровую уху ели, а после ухи куропаток с подливкой. Так укомплектовались, что папаша мой тайком расстегнул пуговки на животе…" (А. П. Чехов).

Можно ли утверждать, что люди только тогда садятся к столу, когда у них снижается уровень сахара в крови? Конечно, нет. В любом здоровом организме всегда достаточно энергетических запасов и есть механизмы саморегуляции, которые могут эти запасы мобилизовать для поддержания необходимого уровня глюкозы. Непрерывное наблюдение за уровнем сахара в крови крыс, осуществляемое с помощью постоянного внутривенного катетера, показало, что он отклоняется от среднего значения не более, чем на 1-2%. Но, если кормить крыс всегда в одно и то же время, то примерно за 10 минут до подачи еды уровень сахара снижается примерно на 8%. Такого снижения нет, если дать крысам еду неожиданно, в неурочное время. Оказалось, что причиной снижения уровня сахара перед ожидаемой едой является повышение секреции инсулина, что можно рассматривать, как реакцию на намерение принять пищу. Примечательно, что если ожидаемая пища не поступит, секреция инсулина, и уровень сахара вскоре вернутся к обычному среднему значению.

Таким образом, есть механизмы гомеостатического регулирования, способные сохранять постоянное значение сахара, а возможно и аминокислот, при разных пищевых рационах и разных моделях питания, от которых непосредственно зависит количество образующегося жира и масса тела. Заданный вес может меняться под влиянием меняющейся структуры питания и устанавливаться на новом уровне. В таких случаях со временем опять устанавливается баланс между энерготратами и количеством поступающих питательных веществ, но уже при новом заданном значении.

13.10. Питьевое поведение

13.10.1. Обмен воды и солей в организме

Вода в живых организмах является основным растворителем, в котором происходит большинство химических реакций. С помощью воды транспортируются питательные вещества, продукты обмена, молекулы физиологических регуляторов, она необходима для пищеварения в кишечнике, для регуляции температуры тела и для удаления отходов жизнедеятельности. У растений вода составляет до 90% их массы, у человеческого эмбриона – 93-95%, у новорождённого – 75% от веса тела. С возрастом содержание воды в организме уменьшается и составляет у взрослых людей около 60% (у худых – 70%, а у тучных – 50%, поскольку жировая ткань бедна водой). За сутки взрослый человек с массой тела 70 кг теряет около 2,3 л воды: 1400 мл с мочой, 800 мл испаряется с поверхности кожи и уходит в виде водяных паров при дыхании, 100 мл – с калом. В то же время около 1 л воды поступает в организм с выпитыми жидкостями, примерно столько же содержится в съеденной пище и около 300 мл воды образуется при окислительных процессах в тканях – в сумме те же 2,3 л.

Приведённые цифры достаточно условны, они могут изменяться в зависимости от окружающей температуры (жаркое лето или холодная зима, регулярное посещение бани и т.п.), характера питания (например, овощи и фрукты содержат много воды, а в белковой пище её меньше), физических нагрузок (увеличенные потери воды с потом) и индивидуальных привычек, связанных с потреблением жидкостей. Но при любом варианте механизмы гомеостатического регулирования у здорового человека поддерживают баланс между потреблением и потерей воды. При уменьшении оптимального количества воды в организме (которое можно рассматривать в качестве заданного значения) возникает жажда. Она появляется, если потеря воды составит примерно 0,5% от массы тела (например, при весе 70 кг ощущение жажды вызывает потеря всего лишь 350 мл жидкости). Утрата 10% от веса тела за счёт воды приводит к тяжёлой дегидратации (обезвоживанию), а потеря 20% является смертельной (10% = 7 л, которые теряются в норме за 2, 5 суток).

Обмен воды неразрывно связан с обменом солей, а поэтому, говоря о воде, следует обсуждать проблему водно-солевого баланса. Растворённые в воде соли, в первую очередь натрия, создают осмотическое давление, которое заставляет воду перемещаться в область их большей концентрации. В организме вода распределена в трёх жидкостных пространствах: внутриклеточном, где содержится 2/3 всей воды, межклеточном или интерстициальном – приблизительно 1/4, а остальные 7-8% воды приходятся на плазму крови, лимфу и ликвор. Более высокая концентрация натрия во внеклеточной жидкости и крови, по сравнению с внутриклеточной, создаёт большее осмотическое давление. Оно уравновешивается онкотическим давлением в клетках, создаваемым растворёнными там белковыми молекулами. Таким образом, все жидкости оказываются изотоничными относительно друг друга.

Если концентрация натрия в крови и внеклеточной жидкости повысится, эти жидкости становятся гипертоничными (например, за счёт поступления большого количества соли с пищей или в связи с большой потерей воды при интенсивном потении). В таком случае вода начнёт перемещаться в область большей осмотической концентрации, т.е. из клеток во внеклеточное пространство. Потеря воды клетками (клеточная дегидратация), разумеется, крайне нежелательна, а устранить её можно, лишь восстановив прежнее, т.е. изотоничное состояние внеклеточной жидкости, – для этого надо просто разбавить её водой. Часть воды для этого можно сэкономить на диурезе, уменьшив на время объём выделяемой мочи, но одновременно необходимо увеличить количество выпиваемой жидкости.

13.10.2. Регуляция водно-солевого равновесия и питьевого поведения

Контроль величины осмотического давления осуществляют центральные и периферические осморецепторы. Функцию центральных рецепторов выполняют определённые нейроны супраоптических ядер гипоталамуса, периферические рецепторы находятся преимущественно в печени и воротной вене, несущей к печени кровь от пищеварительного тракта. Информация от периферических осморецепторов поступает к супраоптическим и паравентрикулярным ядрам гипоталамуса. При повышении осмотического давления нейроны гипоталамуса увеличивают секрецию вазопрессина, который называют также антидиуретическим гормоном (АДГ). В задней доле гипофиза, где оканчиваются аксоны этих нейронов, выделяющийся АДГ поступает в кровь и доставляется ею к почкам.

Структурными и функциональными единицами почек являются нефроны (в каждой почке содержится около 1 миллиона нефронов), образованные клубочком кровеносных капилляров, окружённым специальной капсулой, которая соединена с канальцами (См. рис.12.3). Из капилляров в капсулу фильтруется плазма крови (за исключением лишь содержащихся в ней белков), объём этого фильтрата составляет около 170-180 л/сутки у взрослого человека. В канальцах нефрона большая часть фильтрата, в котором содержатся нужные организму вещества, всасывается обратно (реабсорбируется свыше 99% фильтрата) и попадает в сеть кровеносных капилляров. В остающемся объёме, т.е. в конечной моче, содержатся ненужные продукты обмена, растворённые в воде. Моча собирается в почечные лоханки, затем по мочеточникам попадает в мочевой пузырь, откуда периодически выводится из организма. АДГ увеличивает реабсорбцию воды в канальцах нефрона, поэтому при повышенном выделении этого гормона меньше воды теряется с мочой, а диурез, естественно, уменьшается.

Повышение осмотического давления является главным, но не единственным стимулом для образования АДГ. Гипоталамус увеличивает образование этого гормона в ответ на афферентную импульсацию от болевых рецепторов и от волюморецепторов (рецепторов объёма) предсердий, если они меньше обычного наполняются кровью (например, вследствие её потери). Кроме того, образование АДГ стимулирует ангиотензин.

При уменьшении объёма внеклеточной жидкости и крови тоже возникает жажда, даже если осмотическое давление при этом не изменилось. Именно такая ситуация возникает после кровопотери, в том числе и у добровольных доноров. При уменьшении объёма циркулирующей крови меняется характер импульсации от волюморецепторов предсердий, а при падении кровяного давления ещё и от барорецепторов аорты и сонных артерий. Афферентная информация от этих рецепторов поступает в гипоталамус и стимулирует образование АДГ. Последующая задержка воды в почках способствует частичному восстановлению прежнего объёма внеклеточной жидкости.

Уменьшение объёма крови приводит к резкому снижению кровоснабжения почек, которые обычно получают около 20% минутного объёма кровотока. В ответ на уменьшение кровотока почки выделяют в кровь ренин, а он, действуя как фермент на содержащийся в крови белок ангиотензиноген, способствует образованию из него ангиотензина. Появление ангиотензина сопровождается тремя важными последствиями: 1) он оказывает мощное сосудосуживающее действие, что исключительно важно при потере крови; 2) стимулирует образование АДГ в гипоталамусе и одновременно способствует появлению жажды; 3) повышает секрецию альдостерона корой надпочечников. Образующийся альдостерон увеличивает задержку ионов натрия в почках, а вслед за ионами натрия, подчиняясь механизму осмоса, задерживается вода, которая обычно следует за натрием, как нитка за иглой.

Конечно же, с помощью одних лишь механизмов гомеостатического регулирования восстановить потерянный объём жидкости, как и нарушенное осмотическое равновесие, невозможно без увеличения количества потребляемой жидкости. И нарушенное осмотическое равновесие, и уменьшение объёма внеклеточной воды вызывают жажду, которую в первом случае можно назвать гиперосмотической, а во втором – гиповолемической, но в обоих случаях питьевая мотивация возникает в связи с повышением активности нейронов гипоталамуса (Рис. 13.11).

Меньше известно о том, какие физиологические механизмы способствуют окончанию питья. Несомненно, что главными из них являются восстановление осмотического равновесия и/или потерянного объёма жидкости, но, по-видимому, не только они. Имеет значение и уменьшение сухости во рту, которую вызывало пониженное слюноотделение – неизбежное следствие экономии воды. Некоторое значение имеет само питьё, т.е. связанная с ним моторная деятельность и сенсорные ощущения. Определённую роль играет соответствующая сенсорная информация от рецепторов желудка и двенадцатиперстной кишки.

Многие люди, а может быть и большинство, склонны пить, ещё до того, как возникнет жажда: именно по этой причине питьё может просто сопровождать еду. Интересно, что в таком случае количество потребляемой жидкости зачастую пропорционально степени солёности пищи, т.е. на основе своего опыта человек может научиться предупреждать сдвиг водно-солевого равновесия. Количество выпиваемой жидкости нередко существенно зависит от её вкуса, от существующей традиции потребления определённых напитков (чай, квас, пиво и т.п.).

13.11. Половое поведение

13.11.1. Критические периоды половой дифференцировки

Половые мотивации обусловлены, в первую очередь, действием половых гормонов на определённые структуры мозга. Но, как соотношение андрогенов и эстрогенов, так и функция (и даже структура) некоторых областей мозга у женщин и мужчин существенно отличаются. Эти отличия появляются впервые на седьмой неделе внутриутробного развития, когда определяется программа развития гонад: яичников у женщин, яичек у мужчин. До этого времени у зародышей, имеющих разный генетический пол (ХХ – будущие женщины и ХY – будущие мужчины) нет никаких биологических различий. Если во время этого периода, являющегося критическим, не появится специфический белок, синтез которого контролирует Y-хромосома, то дальнейшее развитие всегда происходит по пути формирования женского организма – для этого не требуется никакого дополнительного влияния, такой путь является стандартным.

В коротком плече Y-хромосомы содержится ген, кодирующий белок, который вызывает формирование яичек. Если блокировать действие этого белка у эмбриона экспериментального животного с генотипом XY, то разовьётся женский организм. И наоборот: введение такого белка генетически женскому эмбриону в критическом периоде приведёт к образованию мужского фенотипа. Таким образом, всё дальнейшее развитие по женскому или мужскому варианту определяет один ген Y-хромосомы.

Следующий критический период относится к третьему месяцу внутриутробного развития, когда у мужского плода уже сформируются яички и в них начинает вырабатываться тестостерон, а также гликопротеин, вызывающий разрушение клеток т.н. мюллерова протока – эмбриональной структуры, из которой формируются женские половые органы. Тестостерон в это же время способствует развитию вольфова протока, из которого формируются мужские половые органы. У женского плода тестостерона нет, а при его отсутствии всё происходит наоборот: из мюллерова протока развиваются женские половые органы, а клетки вольфова протока постепенно погибают, причём для этих процессов женские половые гормоны – эстрогены не требуются, а образующиеся яичники в это время ещё не выделяют гормоны. Если удалить яичники у женского плода экспериментального животного, то всё равно рождается особь женского пола.

Развитие мужского плода наряду с тестостероном могут определять материнские гормоны – эстрогены, которые попадают в его организм через плаценту. Все эти гормоны вызывают развитие мозга по мужскому типу, т.е. маскулинизируют его. Почему мужские и женские гормоны обладают одинаковым действием? Их молекулы, образующиеся из общего предшественника – холестерина, очень похожи и тестостерон в клетках-мишенях, где обычно есть специальный фермент, легко превращается в эстрадиол путём ароматизации бензольного кольца, а именно эстрадиол оказывает непосредственное маскулинизирующее действие. От материнских эстрогенов плоды обоего пола защищаются с помощью специального белка – a-фетопротеина, который специфически связывает эстрогены.

У мужского плода тестостерон проникает в клетки мозга (прежде всего гипоталамуса, а также миндалин, среднего мозга, спинного мозга, коры – особенно лимбической), где путём ароматизации превращается в эстрадиол, который и вызывает маскулинизирующий эффект. В чём состоит этот эффект? Он, прежде всего, выражается в том, что у взрослых мужчин и женщин секреция гонадотропных гормонов гипофиза происходит по-разному: у мужчин они выделяются равномерно, а у женщин – циклически, в зависимости от созревания фолликулов в яичниках. Это определяется различной чувствительностью гипоталамических нейронов, секретирующих гонадолиберины для гипофиза, к действию половых гормонов, и такие различия появляются ещё до рождения. Кроме того, маскулинизирующий эффект проявляется в более агрессивном поведении представителей мужского пола. Если вводить беременным самкам мышей тестостерон, то даже рождающиеся от такой беременности самки более агрессивны, чем обычно, в определённой мере изменяется и их половое поведение.

Ещё одна критическая фаза, определяющая появление половых различий мозга, приходится на т.н. перинатальный период – небольшой временной промежуток до и после рождения. Наличие или отсутствие тестостерона в этом периоде существенно сказывается на развитии полового диморфизма (существования двух различных форм у одного вида) мозга. Кроме уже указанных различий в характере секреции гонадотропных гормонов гипофиза и гонадолиберинов гипоталамуса, половой диморфизм проявляется в структуре определённых нейронов. У представителей разного пола нейроны преоптической области гипоталамуса и вентромедиального ядра имеют разную форму дендритов и самого ядра, что предопределяет различия в характере обработки афферентной информации. Электрическая стимуляция преоптической области у самцов многих видов животных немедленно стимулирует половую активность, а её разрушение приводит к угнетению полового поведения. У самок аналогичные изменения наблюдаются при стимуляции или разрушении вентромедиального ядра гипоталамуса.

У всех млекопитающих, в том числе и у человека, в преоптическом регионе гипоталамуса есть небольшое ядро, получившее название полодиморфного. Сразу после рождения в нём незаметны различия, связанные с полом, но довольно скоро выявляется почти в два раза большая величина его и большее содержание клеток у представителей мужского пола (Рис. 13.12).

Эти различия сохраняются до глубокой старости, хотя примерно после 40 лет величина ядра и у мужчин, и у женщин уменьшается. Этот вопрос изучался экспериментально путём наблюдения за развитием мышей, кастрированных сразу после рождения. Оказалось, что это у таких животных полодиморфное ядро с возрастом не увеличивается, но, если сразу после кастрации вводить им тестостерон, оно сможет развиваться как у интактных мышей.

Есть факты, свидетельствующие о том, что тестостерон способствует половой дифференцировке спинного мозга. В его крестцовом отделе у самцов крыс была выделена небольшая группа мотонейронов, управляющая двумя мышцами, связанными с половым членом. У взрослых самок таких мышц нет, так же, как и соответствующих мотонейронов. Но, если новорождённым самкам вводить в спинной мозг тестостерон, то можно замедлить постепенное отмирание этих мотонейронов.

Секреция тестостерона у зародыша мужского пола начинается примерно на седьмой неделе беременности и вскоре достигает высокого уровня – это первый критический период. На поздних сроках беременности содержание тестостерона в плазме крови плода становится низким, но сразу после рождения, т.е. в перинатальном периоде, быстро повышается – это второй критический период. К концу первого года жизни секреция тестостерона снова сильно уменьшается и остаётся на низком уровне до наступления пубертатного периода или периода полового созревания. Он начинается у мальчиков приблизительно с 12, а у девочек – с 11 лет, когда половые железы увеличивают секрецию гормонов. К 17-16 годам секреция гормонов достигает уровня, характерного для взрослых. До пубертатного периода, при низкой секреции половых гормонов мальчики и девочки мало различаются, а с началом этого периода формируются присущие каждому полу вторичные половые признаки: особенности роста волос и структуры кожи, характер формирования жировой ткани, развитие мышечной массы и грудных желёз, тембр голоса и т.п. И у мальчиков, и у девочек образуются как мужские половые гормоны (андрогены), так и женские (эстрогены), но у мальчиков преобладает первая группа гормонов, а у девочек – вторая: соотношение этих гормонов определяет индивидуальный тип маскулинизации или феминизации. Многие учёные склонны связывать проявления агрессивности в поведении с уровнем тестостерона, эта гипотеза кажется убедительной, если сравнить в среднем поведение мужчин и женщин.

13.11.2. Половые особенности когнитивной деятельности

Если вторичные половые признаки легко различимы, то связанные с полом особенности когнитивной деятельности далеко не так бросаются в глаза, тем не менее, они существуют. В экспериментах, проведённых на обезьянах разного возраста и пола, было показано, что повреждение префронтальной коры у молодых самцов приводит к таким же нарушениям пространственного различения, что и взрослых животных обоего пола. Повреждение этой же области коры у молодых самок такими нарушениями не сопровождается. Вместе с тем известно, что взрослые самцы превосходят самок в способности пространственного различения (так же, как и мужчины справляются с подобными задачами в среднем лучше, чем женщины). Найденные различия принято объяснять более ранним созреванием префронтальной коры у представителей мужского пола.

Ещё одна сторона деятельности мозга, в которой обнаружены зависящие от пола отличия, связана с функциональной асимметрией больших полушарий. У большинства правшей левое полушарие в большей степени осуществляет речевую функцию, а правое лучше справляется с пространственными представлениями, например, мысленным вращением какого-либо предмета. Именно поэтому представление о форме предмета, который нельзя увидеть, но можно потрогать, складывается легче, если ощупывать его левой рукой: в таком случае легче и определить, какой из изображённых на картинке предметов был предъявлен для опознания. Большинство взрослых, как мужчин, так и женщин, предпочитают выполнять этот тест левой рукой. Мальчики поступают так примерно с шести лет, что указывает на уже развившуюся у них асимметрию полушарий; девочки не обнаруживают признаков асимметрии примерно до 13 лет. На более раннюю специализацию полушарий у мальчиков указывает и тот факт, что повреждение левого, т.е. речевого полушария приводит у них к большим нарушениям речи, чем у девочек того же возраста, чей мозг ещё сохраняет высокую степень пластичности. По этой же причине различные формы детской афазии (нарушения речи) и речевой дефицит чаще наблюдаются у мальчиков.

При очаговых поражениях различных полушарий мозга у взрослых мужчин наблюдается чёткая связь между стороной повреждения и нарушенной функцией: патологический очаг в левом полушарии повреждает, как правило, речевую функцию, в правом – неречевые функции. У женщин такая зависимость проявляется в меньшей степени, что указывает на менее выраженную функциональную асимметрию. В дополнение к этому следует указать на превосходство женщин в беглости речи, скорости восприятия и узнавания некоторых объектов, например, человеческих лиц, в способности проводить арифметические вычисления. Мужчины в среднем превосходят женщин в способности формировать пространственные представления, логически мыслить и программировать целенаправленную моторную деятельность.

13.11.3. Биологические основы сексуального поведения

Мужское сексуальное поведение в значительной мере определяет тестостерон, действующий на специальные нейроны гипоталамуса. После кастрации сексуальный интерес уменьшается быстро и сильно. В 1959 году Бремер (Bremer J.) опубликовал результаты наблюдений 157 случаев кастрации, в половине из них уже в ближайшие недели наблюдалась полная асексуальность, у большинства остальных подвергнутых операции мужчин быстро исчезала способность к эрекции полового члена, хотя сексуальный интерес сохранялся. Параллельно с этим изменялись вторичные половые признаки: уменьшилось количество волос на лице, туловище, руках и ногах; кожа стала мягче, а мышечная сила уменьшилась. Лишь в отдельных случаях на протяжении нескольких месяцев сохранялась сексуальная активность, что, по-видимому, объяснялось действием андрогенов надпочечников.

С помощью инъекций тестостерона можно восстановить сексуальное поведение после кастрации. Первое доказательство такого рода было получено ещё в начале 20-х годов ХХ столетия, когда за медицинской помощью обратился 38-летний ветеран Первой мировой войны, у которого яички отсутствовали в результате осколочного ранения. Его половая дееспособность была восстановлена с помощью повторных введений тестостерона, хотя, разумеется, это не избавило пациента от бесплодия (ввиду отсутствия органа, в котором образуются гаметы).

Уровень тестостерона в крови не определяет, однако, степень половой потенции: для неё необходим лишь определённый минимальный уровень гормона, а в какой мере он превышен у того или иного мужчины – особой роли не играет. Известен эксперимент, в котором были кастрированы самцы морских свинок, предварительно разделённые на три группы (сильных, средних и слабых) в соответствии со своим половым поведением. После кастрации все животные стали асексуальными и тогда им начали вводить тестостерон в больших дозах, одинаковых во всех трёх подопытных группах. Половая потенция восстановилась, причём её проявления у животных трёх наблюдаемых групп оказались такими же разными, как и до операции, т.е. их также можно было разделить на сильных, средних и слабых, хотя уровень тестостерона у всех был одинаково высоким. Следовательно, индивидуальные отличия полового поведения определяются какими-то другими факторами, данные о физиологических механизмах которых пока отсутствуют.

Сексуальное поведение самок у многих видов грызунов в значительной степени зависит от уровня эстрогена и прогестерона, который циклически меняется. Именно этим объясняется то обстоятельство, что самки многих видов млекопитающих сексуально активны только в определённые периоды эстрального цикла. Сексуальное поведение женщин не связано в такой же мере с менструальным циклом и, скорее всего, управляется иначе. Неожиданно малое влияние на него оказывает даже оперативное удаление яичников. Существует предположение, что половое поведение женщин зависит не столько от эстрогенов, сколько от андрогенов надпочечников. Эта гипотеза основана на экспериментальных доказательствах, а также на установленных фактах корреляции половой активности женщин с уровнем андрогенов, но не эстрадиола. Кроме того, у женщин, перенесших хирургическую операцию одновременного удаления яичников и матки (что обычно тяжело переносится не только физически, но и психологически) восстановить половую мотивацию удаётся с помощью инъекций тестостерона, но не эстрадиола.

Резюме

Изменения гомеостатических параметров приводят в действие нервные и эндокринные механизмы их регуляции, направленные на восстановление заданного значения параметров. Одновременно с этим или заблаговременно формируется специфическое поведение, направленное на достижение той же цели. Главной мотивационной структурой мозга является гипоталамус, нейроны которого активируются притоком специфических афферентных импульсов и прямым влиянием гуморальных факторов. В мотивациях, связанных с действием внешних факторов важную роль играют миндалины мозга. Конкретные формы мотивированного поведения и определения мотивационной доминанты определяются сложными разновидностями взаимодействия между подкорковыми структурами и корой мозга, причём важную роль играет прежний поведенческий опыт и образованные следы памяти.

Вопросы для самоконтроля

205. Какая из указанных ниже структур не относится к мезолимбической системе?

А. Красное ядро; Б. Прилегающее ядро; В. Обонятельная луковица; Г. Перегородка; Д. Префронтальная кора.

206. С выделением какого нейромедиатора в прилегающем ядре связано получение удовольствия, как "награды" за совершённые действия?

А. Глутамат; Б. ГАМК; В. Глицин; Г. Дофамин; Д. Серотонин.

207. Какая структура мозга играет главную роль в формировании поведения, мотивированного, в первую очередь, внешними факторами?

А. Гипоталамус; Б. Таламус; В. Миндалина; Г. Гипофиз; Д. Гиппокамп.

208. Из какого источника миндалины мозга получают необходимую афферентную информацию раньше всего?

А. Таламус; Б. Гипоталамус; В. Орбитофронтальная кора; Г. Поясная извилина; Д. Вторичная слуховая кора.

209. Какая из перечисленных структур должна активироваться прежде других при изменениях гомеостаза и формировании биологических мотиваций?

А. Гипоталамус; Б. Гиппокамп; В. Лобная кора; Г. Височная кора; Д. Миндалины.

210. В чём состоит терморегулирующая роль переднего гипоталамуса?

А. Суммация температурных сигналов; Б. Регуляция интенсивности конвекции; В. Регуляция интенсивности теплоизлучения; Г. Регуляция потоотделения; Д. Регуляция теплопроведения.

211. В какой области нет термочувствительных нейронов?

А. Кожа; Б. Внутренние органы; В. Спинной мозг; Г. Передний гипоталамус; Д. Задний гипоталамус

212.. Какой из перечисленных ниже гормонов не относится к контринсулярным?

А. Глюкагон; Б. Тироксин; В. Соматотропин; Г. Адреналин; Д. Кортизол.

213. Какие клетки используют находящуюся в крови глюкозу без помощи инсулина?

А. Клетки печени; Б. Нервные клетки; В. Клетки соединительной ткани; Г. Клетки скелетных мышц; Д. Любые клетки получают глюкозу только при посредничестве инсулина.

214. Какой гормон способствует образованию жировой ткани?

А. Инсулин; Б. Глюкагон; В. Адреналин; Г. Соматотропин; Д. Кортизол.

215. Разрушение какого отдела гипоталамуса сопровождается афагией?

А. Вентромедиальный; Б. Латеральный; В. Передний; Г. Задний; Д. Паравентрикулярные ядра.

216. Что из перечисленного ниже является самым сильным активатором центра голода в гипоталамусе?

А. Жевание и глотание пищи; Б. Гипогликемия; В. Стимуляция механорецепторов растянутого желудка; Г. Действие гормонов желудочно-кишечного тракта на гипоталамус; Д. Действие продуктов расщепления пищи на хеморецепторы тонкого кишечника.

217. Какое вещество уменьшает активность центра голода в гипоталамусе?

А. Галанин; Б. Норадреналин; В. Нейропептид Y; Г. Лептин; Д. ГАМК.

218. При каком уменьшении процентного содержания воды от заданного значения с наибольшей вероятностью можно предсказать появление жажды?

А. 0,1%; Б. 0,2%; В. 0,3%; Г. 0,4%; Д. 0,5%.

219. Что может привести к нормализации повышенного осмотического давления крови?

А. Повышенное образование ренина; Б. Повышенное образование альдостерона; В. Повышенное образование вазопрессина; Г. Повышенный водный диурез; Д. Уменьшенное потребление воды.

220. В каком периоде развития определяется формирование мужского или женского фенотипа при генотипе XY?

А. В момент оплодотворения яйцеклетки, т.е. возникновения генотипа XY; Б. На седьмой неделе внутриутробного развития; В. На третьем месяце внутриутробного развития; Г. В перинатальном периоде; Д. В пубертатном периоде.

221. Под действием какого гормона в процессе внутриутробного развития формируется женский фенотип при генотипе ХХ?

А. Тестостерон; Б. Эстрадиол; В. Прогестерон; Г. Фоллитропин; Д. Этот процесс не зависит от гормонов.

222. Чем определяется половой диморфизм в характере секреции гонадотропных гормонов гипофиза?

А. Генотипом ХХ или ХY; Б. Действием материнских гормонов на развивающийся плод; В. Собственным a-фетопротеином плода; Г. Действием тестостерона; Д. Действием эстрадиола.

223. Что из перечисленного ниже не относится к вторичным половым признакам?

А. Особенности роста волос; Б. Структурные особенности кожи; В. Тип гамет; Г. Характер развития мышечной массы; Д. Характер развития грудных желёз.

224. В каком виде когнитивной деятельности мужчины в среднем превосходят женщин?

А. В беглости речи; Б. В скорости восприятия некоторых объектов; В. В арифметическом счёте; Г. В формировании пространственных представлений; Д. В узнавании человеческих лиц.

225. С действием какого из перечисленных гормонов связывают сексуальную активность женщин?

А. Гонадотропные гормоны гипофиза; Б. Андрогены надпочечников; В. Эстрадиол; Г. Прогестерон; Д. Суммарная активность эстрогенов.