Сила взаимодействия между зарядами. Закон Кулона

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\(~F = k \cdot \dfrac{|q_1| \cdot |q_2|}{r^2}\) , (1)

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ \(~k = \dfrac{1}{4 \pi \cdot \varepsilon_0} = 9 \cdot 10^9\) Н·м 2 /Кл 2 , где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 .

Формулировка закона :

сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эту силу называют кулоновской .

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, т.к. только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела. Подобные силы называют центральными . Если через \(~\vec F_{1,2}\) обозначить силу действующую на первый заряд со стороны второго, а через \(~\vec F_{2,1}\) – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, \(~\vec F_{1,2} = -\vec F_{2,1}\) . Обозначим через \(\vec r_{1,2}\) радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

\(~\vec F_{1,2} = k \cdot \dfrac{q_1 \cdot q_2}{r^3_{1,2}} \cdot \vec r_{1,2}\) . (2)

Если знаки зарядов q 1 и q 2 одинаковы, то направление силы \(~\vec F_{1,2}\) совпадает с направлением вектора \(~\vec r_{1,2}\) ; в противном случае векторы \(~\vec F_{1,2}\) и \(~\vec r_{1,2}\) направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Ш. Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

\(~F_{ynp} = k \cdot \dfrac{d^4}{l} \cdot \varphi\) ,

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10 -8 Н.

Рис. 3

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8 , а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1 . Здесь же имелся указатель 2 , с помощью которого отсчитывался угол закручивания нити по круговой шкале 3 . Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11 . В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12 . При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8 .

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10 ). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α . Сила же взаимодействия шариков была пропорциональна φ , т. е. по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8 ) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков :

\(~F \sim q_1 \cdot q_2\) .

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ . Затем поворотом головки 1 уменьшался этот угол до γ 1 . Общий угол закручивания φ 1 = α 1 + (γ - γ 1)(α 1 – угол поворота головки). При уменьшении углового расстояния шариков до γ 2 общий угол закручивания φ 2 = α 2 + (γ - γ 2) . Было замечено, что, если γ 1 = 2γ 2 , ТО φ 2 = 4φ 1 , т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

\(~F \sim \dfrac{1}{r^2}\) .

Литература

  1. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
  2. Вольштейн С. Л. и др. Методы физической науки в школе: Пособие для учителя / С.Л. Вольштейн, С.В. Позойский, В.В. Усанов; Под ред. С.Л. Вольштейна. – Мн.: Нар. асвета, 1988. – 144 с.

Страница 56

ЗАКОН КУЛОНА(уч.10кл.стр.354-362)

Основной закон электростатики. Понятие точечного заряженного тела.

Измерение силы взаимодействия зарядов с помощью крутильных весов. Опыты Кулона

Определение точечного заряда

Закон Кулона. Формулировка и формула

Сила Кулона

Определение единицы заряда

Коэффициент в законе Кулона

Сравнение электростатических и гравитационных сил в атоме

Равновесие статических зарядов и его физический смысл (на примере трех зарядов)

Основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел.

Установлен Шарлем Огюстеном Кулоном в 1785 году и носит его имя.

В природе точечных заряженных тел не существует, но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В током случае эти тела можно рассматривать, как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между ними. Опыт показывает, что воздух очень мало влияет на силу этого взаимодействия и она оказывается почти такой же как в вакууме.

Опыт Кулона

Первые результаты по измерению силы взаимодействия зарядов получены в 1785 г. французским ученым Шарлем Огюстеном Кулоном

Для измерения силы использовались крутильные весы.

Маленькая тонкая незаряженная золотая сфера на одном конце изолирующего коромысла, подвешенного на упругой серебряной нити, уравновешивалась на другом концу коромысла бумажным диском.

Поворотом коромысла она приводилась в контакт с такой же неподвижной заряженной сферой, в результате чего ее заряд делился поровну между сферами.

Диаметр сфер выбирался много меньше расстояния между ними, чтобы исключить влияние размеров и формы заряженных тел на результаты измерений.

Точечный заряд – заряженное тело, размер которого много меньше расстояния его возможного действия на другие тела.

Сферы, имеющие одноименные заряды, начинали отталкиваться, закручивая нить. Угол поворота был пропорционален силе, действующей на подвижную сферу.

Расстояние между сферами измерялось по специальной градуировочной шкале.

Разряжая сферу 1 после измерения силы и соединяя ее вновь с неподвижной сферой, Кулон уменьшал заряд на взаимодействующих сферах в 2,4,8 и т.д. раз,

Закон Кулона:

Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними, и направлена по прямой, соединяющей заряды.

k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Силу F12 называю силой Кулона

Сила Кулона центральная, т.е. направлена по линии соединяющей центры зарядов.

В СИ единица заряда является не основной, а производной, и определяется с помощью Ампера – основной единицы СИ.

Кулон – электрический заряд, проходящий через поперечное сечение проводника при силе тока в 1 А за 1 с

В СИ коэффициент пропорциональности в законе Кулона для вакуума:

k = 9*109 Нм2/Кл2

Часто коэффициент записывают в виде:

e0 = 8,85*10-12 Кл2/(Нм2) – электрическая постоянная

Закон Кулона записывается в форме:

Если точечный заряд поместить в среду с относительной диэлектрической проницаемостью e, отличную от вакуума, кулоновская сила уменьшится в e раз.

У любой среды кроме вакуума e > 1

Согласно закону Кулона два точечных заряда по 1 Кл, на расстоянии 1 м в вакууме, взаимодействуют с силой

Из этой оценки видно, что заряд в 1 Кулон – очень большая величина.

На практике пользуются дольными единицами – мкКл (10-6), мКл (10-3)

1 Кл содержит 6*1018 зарядов электронов.

На примере сил взаимодействия электрона и протона в ядре можно показать, что электростатическая сила взаимодействия частиц больше гравитационной примерно на 39 порядков. Однако электростатические силы взаимодействия макроскопических тел (в целом электронейтральных) определяются лишь очень малыми избыточными зарядами, находящимися на них, и поэтому не велики по сравнению с гравитационными, зависящими от массы тел.

Возможно ли равновесие статических зарядов?

Рассмотрим систему из двух положительных точечных зарядов q1 и q2.

Найдем, в какую точку следует поместить третий заряд, чтобы он находился в равновесии, а так же определим величину и знак этого заряда.

Статическое равновесие возникает тогда, когда геометрическая (векторная) сумма сил, действующих на тело, равна нулю.

Точка, в которой силы, действующие на третий заряд q3, могут компенсировать друг друга, находится на прямой между зарядами.

При этом заряд q3 может быть как положительным так и отрицательным. В первом случае компенсируются силы отталкивания, во втором – силы притяжения.

Учитывая закон Кулона статическое равновесие зарядов будет в случае:

Равновесие заряда q3 не зависит ни от его величины, ни от знака заряда.

При изменении заряда q3 в равной мере меняются как силы притяжения (q3 положительный), так и силы отталкивания (q3 отрицательный)

Решив квадратное уравнение относительно x можно показать, что заряд любого знака и величины будет находится в равновесии в точке на расстоянии x1 от заряда q1:

Выясним устойчивым или неустойчивым будет положение третьего заряда.

(При устойчивом равновесии тело, выведенное из положения равновесия, возвращается к нему, при неустойчивом – удаляется от него)

При горизонтальном смещении силы отталкивания F31, F32 меняются из-за изменения расстояний между зарядами, возвращая заряд к положению равновесия.

При горизонтальном смещении равновесие заряда q3 устойчивое.

При вертикальном смещении, равнодействующая F31, F32 выталкивает q3

Перейти на страницу:

Два точечных заряда действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов (без учета знака зарядов)

В различных средах, например в воздухе и в воде, два точечных заряда взаимодействуют с разной силой. Относительная диэлектрическая проницаемость среды характеризуют это различие. Это известная табличная величина . Для воздуха .

Постоянная k определяется как

Направление силы Кулона

Согласно третьему закону Ньютона , силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения . Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Публикации по материалам Д. Джанколи. "Физика в двух томах" 1984 г. Том 2.

Между электрическими зарядами действует сила. Как она зависит от величины зарядов и других факторов?
Этот вопрос исследовал в 1780-е годы французский физик Шарль Кулон (1736-1806). Он воспользовался крутильными весами, очень похожими на те, которые применял Кавендиш для определения гравитационной постоянной.
Если к шарику на конце стержня, подвешенного на нити, подности заряд, стержень слегка отклоняется, нить закручивается, и угол поворота нити будет пропорционален действующей между зарядами силе (крутильные весы). С помощью этого прибора Кулон определил зависимость силы от величины зарядов и расстояния между ними.

В те времена еще не было приборов для точного определения величины заряда, но Кулон сумел приготовить небольшие шарики с известным соотношением зарядов. Если заряженный проводящий шарик, рассуждал он, привести в соприкосновение с точно таким же незаряженным шариком, то имевшийся на первом заряд в силу симметрии распределится поровну между двумя шариками.
Это дало ему возможность получать заряды, составлявшие 1/2, 1/4 и т.д. от первоначального.
Несмотря на некоторые трудности, связанные с индуцированием зарядов, Кулону удалось доказать, что сила, с которой одно заряженное тело действует на другое малое заряженное тело, прямо пропорциональна электрическому заряду каждого из них.
Другими словами, если заряд любого из этих тел удвоить, то удвоится и сила; если же удвоить одновременно заряды обоих тел, то сила станет вчетверо больше. Это справедливо при условии, что расстояние между телами остается постоянным.
Изменяя расстояние между телами, Кулон обнаружил, что действующая между ними сила обратно пропорциональна квадрату расстояния: если расстояние, скажем, удваивается, сила становится вчетверо меньше.

Итак, заключил Кулон, сила, с которой одно малое заряженное тело (в идеальном случае -точечный заряд, т.е. тело, подобно материальной точке не имеющее пространственных размеров) действует на другое заряженное тело, пропорциональна произведению их зарядов Q 1 и Q 2 и обратно пропорциональна квадрату расстояния между ними:

Здесь k -коэффициент пропорциональности.
Это соотношение известно как закон Кулона; его справедливость подтверждена тщательными экспериментами, гораздо более точными, чем первоначальные трудно воспроизводимые опыты Кулона. Показатель степени 2 установлен в настоящее время с точностью 10 -16 , т.е. он равен 2 ± 2×10 -16 .

Коль скоро мы теперь имеем дело с новой величиной - электрическим зарядом, мы можем подобрать такую единицу измерения, чтобы постоянная к в формуле равнялась единице. И действительно, такая система единиц еще недавно широко использовалась в физике.

Речь идет о системе СГС (сантиметр-грамм-секунда), в которой используется электростатическая единица заряда СГСЭ. По определению два малых тела, каждое с зарядом 1 СГСЭ, расположенные на расстоянии 1 см друг от друга, взаимодействуют с силой 1 дина.

Теперь, однако, заряд чаще всего выражают в системе СИ, где его единицей является кулон (Кл).
Точное определение кулона через электрический ток и магнитное поле мы приведем позднее.
В системе СИ постоянная k имеет величину k = 8,988×10 9 Нм 2 /Кл 2 .

Заряды, возникающие при электризации трением обычных предметов (расчески, пластмассовой линейки и т.п.), по порядку величины составляют микрокулон и меньше (1 мкКл = 10 -6 Кл).
Заряд электрона (отрицательный) приблизительно равен 1,602×10 -19 Кл. Это наименьший известный заряд; он имеет фундаментальное значение и обозначается символом е , его часто называют элементарным зарядом.
е = (1,6021892 ± 0,0000046)×10 -19 Кл, или е ≈ 1,602×10 -19 Кл.

Поскольку тело не может приобрести или потерять долю электрона, суммарный заряд тела должен быть целым кратным элементарного заряда. Говорят, что заряд квантуется (т.е. может принимать лишь дискретные значения). Однако, поскольку заряд электрона е очень мал, мы обычно не замечаем дискретности макроскопических зарядов (заряду 1 мкКл соответствуют примерно 10 13 электронов) и считаем заряд непрерывным.

Формула Кулона характеризует силу, с которой один заряд действует на другой. Эта сила направлена вдоль линии, соединяющей заряды. Если знаки зарядов одинаковы, то силы, действующие на заряды, направлены в противоположные стороны. Если же знаки зарядов различны, то действующие на заряды силы направлены навстречу друг другу.
Заметим, что в соответствии с третьим законом Ньютона сила, с которой один заряд действует на другой, равна по величине и противоположна по направлению силе, с которой второй заряд действует на первый.
Закон Кулона можно записать в векторной форме подобно закону всемирного тяготения Ньютона:

где F 12 - вектор силы, действующей на заряд Q 1 со стороны заряда Q 2,
- расстояние между зарядами,
- единичный вектор, направленный от Q 2 к Q 1.
Следует иметь в виду, что формула применима лишь к телам, расстояние между которыми значительно больше их собственных размеров. В идеальном случае это точечные заряды. Для тел конечного размера не всегда ясно, как отсчитывать расстояние r между ними, тем более что распределение заряда может быть и неоднородным. Если оба тела - сферы с равномерным распределением заряда, то r означает расстояние между центрами сфер. Важно также понимать, что формула определяет силу, действующую на данный заряд со стороны единственного заряда. Если система включает несколько (или много) заряженных тел, то результирующая сила, действующая на данный заряд, будет равнодействующей (векторной суммой) сил, действующих со стороны остальных зарядов. Постоянная к в формуле Закона Кулона обычно выражается через другую константу, ε 0 , так называемую электрическую постоянную, которая связана с k соотношением k = 1/(4πε 0) . С учетом этого закон Кулона можно переписать в следующем виде:

где с наивысшей на сегодня точностью

или округленно

Запись большинства других уравнений электромагнитной теории упрощается при использовании ε 0 , поскольку в окончательном результате часто сокращается. Поэтому мы будем обычно использовать Закон Кулона, считая, что:

Закон Кулона описывает силу, действующую между двумя покоящимися зарядами. Когда заряды движутся, между ними возникают дополнительные силы, и их мы обсудим в последующих главах. Здесь же рассматриваются только покоящиеся заряды; этот раздел учения об электричестве называется электростатикой .

Продолжение следует. Коротко о следующей публикации:

Электрическое поле - один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, либо возникающий при изменении магнитного поля.

Замечания и предложения принимаются и приветствуются!