Станция мир и мкс сравнение. Международная космическая станция (МКС)

Кратко о статье: МКС - самый дорогостоящий и амбициозный проект человечества на пути к освоению космоса. Впрочем, строительство станции в самом разгаре, и пока неизвестно, что будет с ней через пару-другую лет. Мы рассказываем о создании МКС и планах по ее завершению.

Космический дом

Международная космическая станция

Ты остаешься за главную. Но ничего не трогай.

Шутка русских космонавтов в адрес американки Шэннон Люсид, которую они повторяли каждый раз, когда выходили со станции “Мир” в открытый космос (1996).

В далеком 1952 году немецкий ракетостроитель Вернер фон Браун говорил, что человечеству очень скоро понадобятся космические станции: как только оно выйдет в космос, его уже будет не остановить. А для планомерного освоения Вселенной нужны орбитальные дома. 19 апреля 1971 года Советским Союзом запущена первая в истории человечества космическая станция “Салют 1”. Она была длиной всего 15 метров, а объем обитаемого пространства составлял 90 квадратных метров. По нынешним меркам первопроходцы летали в космос на ненадежном металлоломе с начинкой из радиоламп, однако тогда казалось, что в космосе для человека больше нет преград. Сейчас, 30 лет спустя, над планетой висит всего один обитаемый объект - “Международная космическая станция”.

Она - самая крупная, продвинутая, но в то же время и самая дорогостоящая станция среди всех, что когда-либо запускались. Все чаще задаются вопросы - а нужна ли она людям? Мол, что вообще нам надо в космосе, если и на Земле осталось так много проблем? Пожалуй, стоит разобраться - что представляет собой этот амбициозный проект?

Рокот космодрома

Международная космическая станция (МКС) - совместный проект 6 космических агентств: Федерального космического агентства (Россия), Национального агентства по аэронавтике и исследованию космического пространства (США), Японского Аэрокосмического Исследовательского Управления (JAXA), Канадского космического агентства (CSA/ASC), Бразильского космического агентства (AEB) и Европейского космического агентства (ESA).

Впрочем, не все члены последнего приняли участие в проекте “МКС” - Великобритания, Ирландия, Португалия, Австрия и Финляндия отказались от этого, а Греция и Люксембург присоединились позднее. По сути, в основе МКС лежит синтез несостоявшихся проектов - русской станции “Мир-2” и американской “Свобода”.

Работа над созданием МКС началась в 1993 году. Станция “Мир” была запущена 19 февраля 1986 года и имела гарантийный срок эксплуатации в 5 лет. Фактически она провела на орбите 15 лет - из-за того, что у страны просто не было денег на запуск проекта “Мир-2”. У американцев были похожие проблемы - холодная война закончилась, и их станция “Свобода”, на одно проектирование которой уже было истрачено около 20 миллиардов долларов, оказалась не у дел.

Россия имела 25-летнюю практику работы с орбитальными станциями, уникальные методики длительного (свыше года) пребывания человека в космосе. Кроме того, у СССР и США имелся неплохой опыт совместной работы на борту станции “Мир”. В условиях, когда ни одна страна не могла самостоятельно потянуть дорогую орбитальную станцию, МКС стала единственной альтернативой.

15 марта 1993 года представители Российского космического агентства и научно-производственного объединения “Энергия” обратились к NASA с предложением о создании МКС. 2 сентября подписано соответствующее правительственное соглашение, а к 1 ноября - подготовлен детальный план работ. Финансовые вопросы взаимодействия (поставки оборудования) были решены летом 1994 года, а к проекту присоединилось 16 стран.

Что в имени твоем?

Название “МКС” родилось в спорах. Первый экипаж станции с подачи американцев дал ей имя “Станция Альфа” и некоторое время использовал его в сеансах связи. Россия была не согласна с таким вариантом, поскольку “Альфа” в переносном смысле означало “первая”, хотя Советский Союз уже запускал 8 космических станций (7 “Салютов” и “Мир”), да и американцы экспериментировали со своей “Skylab”. С нашей стороны было предложено имя “Атлант”, однако американцы отвергли его по двум причинам - во-первых, оно было слишком похоже на название их шаттла “Атлантис”, а во-вторых, ассоциировалось с мифической Атлантидой, которая, как известно, утонула. Было решено остановиться на словосочетании “Международная космическая станция” - не слишком звучный, но компромиссный вариант.

Поехали!

Развертывание МКС было начато Россией 20 ноября 1998 года. Ракета “Протон” вывела на орбиту функционально-грузовой блок “Заря”, который, наряду с американским стыковочным модулем NODE-1, доставленным в космос 5 декабря того же года шаттлом “Индевер”, составил “костяк” МКС.

“Заря” - наследник советского ТКС (транспортный корабль снабжения), разработанного для обслуживания боевых станций “Алмаз”. На первой стадии сборки МКС она стала источником электроэнергии, складом оборудования, средством навигации и корректировки орбиты. Все остальные модули МКС сейчас имеют более конкретную специализацию, в то время как “Заря” практически универсальна и в будущем станет выполнять функции хранилища (питание, топливо, приборы).

Официально “Заря” находится в собственности США - они оплатили ее создание - однако фактически модуль собирали с 1994 по 1998 годы в Государственном космическом центре имени Хруничева. Он был включен в состав МКС вместо модуля “Bus-1”, спроектированного американской корпорацией “Локхид”, поскольку тот стоил 450 миллионов долларов против 220 миллионов за “Зарю”.

У “Зари” три стыковочных шлюза - по одному с каждого конца и один сбоку. Ее солнечные батареи достигают 10,67 метров в длину и 3,35 метров в ширину. Кроме того, на модуле установлено шесть никель-кадмиевых аккумуляторов, способных выдавать около 3 киловатт мощности (первое время с их зарядкой возникали проблемы).

По внешнему периметру модуля расположено 16 топливных баков общим объемом в 6 кубометров (5700 килограммов горючего), 24 поворотных реактивных двигателя большого размера, 12 маленьких, а также 2 главных двигателя для серьезных орбитальных маневров. “Заря” способна на автономный (беспилотный) полет в течение 6 месяцев, однако из-за задержек с российским служебным модулем “Звезда” ей пришлось летать пустой в течение 2 лет.

Модуль “Unity” (создан корпорацией “Боинг”) отправился в космос вслед за “Зарей” в декабре 1998 года. Будучи оборудованным шестью стыковочными шлюзами, он стал центральным соединительным узлом для последующих модулей станции. “Unity” жизненно важен для МКС. Рабочие ресурсы всех модулей станции - кислород, вода и электричество - проходят именно через него. На “Unity” также установлена базовая система радиосвязи, позволяющая использовать коммуникационные возможности “Зари” для общения с Землей.

Служебный модуль “Звезда” - главный российский сегмент МКС - запущен 12 июля 2000 года и состыковался с “Зарей” 2 недели спустя. Его каркас построили еще в 1980-х годах для проекта “Мир-2” (дизайн “Звезды” очень напоминает первые станции “Салют”, а ее конструктивные особенности - станцию “Мир”).

Упрощенно говоря, этот модуль - жилье для космонавтов. Он оснащен системами жизнеобеспечения, связи, управления, обработки данных, а также двигательной установкой. Общая масса модуля - 19050 килограммов, длина - 13,1 метра, размах солнечных батарей - 29,72 метра.

В “Звезде” имеется два спальных места, велотренажер, беговая дорожка, туалет (и другие гигиенические установки), холодильник. Наружный обзор обеспечивают 14 иллюминаторов. Российская электролитическая система “Электрон” разлагает отработанную воду. Водород выводится за борт, а кислород поступает в систему жизнеобеспечения. В паре с “Электроном” работает система “Воздух”, поглощающая углекислый газ.

Теоретически, отработанную воду можно очистить и использовать повторно, однако на МКС такое практикуется редко - свежую воду доставляют на борт грузовые “Прогрессы”. Надо сказать, что система “Электрон” несколько раз барахлила и космонавтам приходилось использовать химические генераторы - те самые “кислородные свечи”, которые однажды вызвали пожар на станции “Мир”.

В феврале 2001 года к МКС (на один из шлюзов “Unity”) присоединен лабораторный модуль “Destiny” (“Судьба”) - алюминиевый цилиндр весом 14,5 тонн, длиной 8,5 метров и диаметром 4,3 метра. Он оборудован пятью монтажными стойками с системами жизнеобеспечения (каждая весит 540 килограммов и может производить электричество, остужать воду и контролировать состав воздуха), а также доставленными чуть позже шестью стойками с научным оборудованием. Оставшиеся 12 пустых установочных мест будут заняты со временем.

В мае 2001 года к “Unity” присоединили главный шлюзовой отсек МКС - “Quest Joint Airlock”. Этот шеститонный цилиндр размерами 5,5 на 4 метра оснащен четырьмя баллонами высокого давления (2 - кислород, 2 - азот), позволяющими компенсировать утрату выпущенного наружу воздуха, и стоит сравнительно недорого - всего 164 миллиона долларов.

Его рабочее пространство в 34 кубометра используется для выходов в открытый космос, причем размеры шлюза позволяют использовать скафандры любых типов. Дело в том, что устройство наших “Орланов” предполагает их применение только на российских переходных отсеках, аналогичная ситуация с американскими EMU.

В этом модуле космонавты, выходящие в космос, также могут отдыхать и дышать чистым кислородом, чтобы избавиться от декомпрессионной болезни (при резкой смене давления азот, количество которого в тканях наших тел достигает 1 литра, переходит в газообразное состояние).

Последним из собранных модулей МКС является российский стыковочный отсек “Пирс” (СО-1). Создание СО-2 было прекращено из-за проблем с финансированием, поэтому на МКС сейчас имеется только один модуль, к которому можно без труда пристыковать корабли “Союз-ТМА” и “Прогресс” - причем сразу три штуки. Кроме того, из него можно выходить наружу космонавтам, одетым в наши скафандры.

И, наконец, нельзя не назвать еще один модуль МКС - багажный многоцелевой модуль обеспечения. Строго говоря, их три - “Леонардо”, “Рафаэлло” и “Донателло” (художники эпохи Возрождения, а также трое из четырех ниндзя-черепашек). Каждый модуль представляет собой практически равносторонний цилиндр (4,4 на 4,57 метра), перевозимый на шаттлах.

В нем может храниться до 9 тонн груза (собственный вес - 4082 килограмма, с максимальной загрузкой - 13154 килограмма) - припасов, доставляемых на МКС, и отходов, увозимых с нее. Весь багаж модуля находится в обычной воздушной среде, поэтому космонавты могут добраться до него, не используя скафандры. Багажные модули были изготовлены в Италии по заказу NASA и относятся к американским сегментам МКС. Они используются поочередно.

Полезные мелочи

Помимо основных модулей, на МКС находится большое количество дополнительного оборудования. Оно уступает по размерам модулям, но без него эксплуатация станции невозможна.

Рабочие “руки”, вернее, “рука” станции - манипулятор “Canadarm2”, смонтированный на МКС в апреле 2001. Эта высокотехнологичная машина стоимостью 600 миллионов долларов способна передвигать объекты весом до 116 тонн - например, помогать в монтаже модулей, стыковать и разгружать шаттлы (их собственные “руки” очень похожи на “Canadarm2”, только меньше и слабее).

Собственная длина манипулятора - 17,6 метров, диаметр - 35 сантиметров. Он управляется космонавтами из лабораторного модуля. Самое интересное заключается в том, что “Canadarm2” не закреплен на одном месте и способен передвигаться по поверхности станции, обеспечивая доступ к большинству ее частей.

К сожалению, из-за различий в портах подключения, расположенных по поверхности станции, “Canadarm2” не может перемещаться по нашим модулям. В недалеком будущем (предположительно, 2007 год) на российском сегменте МКС планируется установить ERA (European Robotic Arm) - более короткий и слабый, но более аккуратный манипулятор (точность позиционирования - 3 миллиметра), способный работать в полуавтоматическом режиме без постоянного управления космонавтами.

В соответствии с требованиями безопасности проекта МКС, на станции постоянно дежурит спасательный корабль, способный в случае необходимости доставить экипаж на Землю. Сейчас эту функцию выполняет старый добрый “Союз” (модель ТМА) - он способен принять на борт 3 человек и обеспечить их жизнедеятельность в течение 3,2 суток. “Союзы” имеют небольшой гарантийный срок пребывания на орбите, поэтому их меняют каждые 6 месяцев.

Рабочими лошадками МКС в настоящее время служат российские “Прогрессы” - родные братья “Союзов”, работающие в беспилотном режиме. За сутки космонавт потребляет около 30 килограммов груза (еда, вода, средства гигиены и т. п.). Следовательно, для штатного шестимесячного дежурства на станции одному человеку необходимо 5,4 тонны припасов. Возить столько на “Союзах” невозможно, поэтому снабжением станции занимаются в основном шаттлы (до 28 тонн груза).

После прекращения их полетов, с 1 февраля 2003 до 26 июля 2005 вся нагрузка по вещевому обеспечению станции лежала на “Прогрессах” (2,5 тонны нагрузки). После разгрузки корабля он заполнялся отходами, отстыковывался в автоматическом режиме и сгорал в атмосфере где-нибудь над Тихим океаном.

Экипаж: 2 человека (по состоянию на июль 2005), максимум - 3

Высота орбиты: От 347,9 км до 354,1 км

Наклон орбиты: 51,64 градуса

Суточных оборотов вокруг Земли: 15,73

Пройденное расстояние: Около 1,5 миллиарда километров

Средняя скорость: 7,69 км/с

Нынешняя масса: 183,3 тонны

Масса топлива: 3,9 тонны

Объем жилого пространства: 425 квадратных метров

Средняя температура на борту: 26,9 градусов Цельсия

Предполагаемое завершение строительства: 2010 год

Планируемый срок работы: 15 лет

Полная сборка МКС потребует 39 полетов шаттлов и 30 полетов “Прогрессов”. В готовом виде станция будет выглядеть так: объем воздушного пространства - 1200 кубометров, масса - 419 тонн, энерговооруженность - 110 киловатт, общая длина конструкции - 108,4 метра (по модулям - 74 метра), экипаж - 6 человек.

На перепутье

До 2003 года постройка МКС шла своим чередом. Некоторые модули отменялись, другие задерживались, иногда возникали проблемы с деньгами, неисправным оборудованием - в общем, дело шло туго, но все же за 5 лет своего существования станция стала обитаемой и на ней периодически проводились научные эксперименты.

1 февраля 2003 при входе в плотные слои атмосферы погиб шаттл “Колумбия”. Американская программа пилотируемых полетов была приостановлена на 2,5 года. Учитывая, что ждущие своей очереди модули станции могли выводиться на орбиту только шаттлами, само существование МКС оказалось под угрозой.

К счастью, США и Россия смогли договориться о перераспределении расходов. Мы взяли на себя обеспечение МКС грузами, а сама станция была переведена на режим ожидания - на ее борту постоянно находились два космонавта, следившие за исправностью оборудования.

Запуски на шаттлах

После успешного полета шаттла “Дискавери” в июле-августе 2005 года появилась надежда на то, что строительство станции будет продолжено. Первым в очереди на запуск стоит близнец соединительного модуля “Unity” - “Node 2”. Предварительная дата его старта - декабрь 2006.

Европейский научный модуль “Колумб” будет вторым: запуск намечен на март 2007. Эта лаборатория уже готова и ждет своего часа - ее необходимо будет присоединить к “Node 2”. Она может похвастаться хорошей противометеоритной защитой, уникальным аппаратом по исследованию физики жидкостей, а также Европейским физиологическим модулем (комплексное медицинское обследование прямо на борту станции).

Следом за “Колумбом” пойдет японская лаборатория “Кибо” (“Надежда”) - ее старт назначен на сентябрь 2007. Она интересна тем, что имеет свой собственный механический манипулятор, а также закрытую “террасу”, где можно проводить эксперименты в условиях открытого космоса, фактически не покидая корабля.

Третий соединительный модуль - “Node 3” должен отправиться на МКС в мае 2008. В июле 2009 планируется запустить уникальный вращающийся модуль-центрифугу CAM (Centrifuge Accommodations Module), на борту которого будет создаваться искусственная гравитация в пределах от 0,01 до 2 g. Он рассчитан, в основном, на научные исследования - постоянное проживание космонавтов в условиях земного тяготения, так часто описываемое фантастами, не предусматривается.

В марте 2009 на МКС полетит “Cupola” (“Купол”) - итальянская разработка, которая, как следует из ее названия, представляет собой бронированный обзорный купол для визуального контроля над манипуляторами станции. Для безопасности иллюминаторы будут оборудованы наружными заслонками, предохраняющими от метеоритов.

Последним модулем, доставленным на МКС американскими шаттлами, станет “Научно-силовая платформа” - массивный блок солнечных батарей на ажурной металлической ферме. Он обеспечит станцию энергией, необходимой для нормального функционирования новых модулей. На нем также будет установлена механическая “рука” ERA.

Запуски на “Протонах”

Российскими ракетами “Протон” предполагается довезти до МКС три крупных модуля. Пока что известен лишь очень приблизительный график полетов. Так, в 2007 году планируется добавить к станции наш запасной функциональный грузовой блок (ФГБ-2 - близнец “Зари”), который будет превращен в многофункциональную лабораторию.

В том же году “Протоном” должна быть развернута европейская рука-манипулятор ERA. И, наконец, в 2009 году надо будет ввести в эксплуатацию российский исследовательский модуль, функционально похожий на американский “Destiny”.

Это интересно

Космические станции - частые гости в научной фантастике. Наиболее известны две - “Вавилон 5” из одноименного телесериала и “Deep Space 9” из сериала “Звездный путь”.

Хрестоматийный облик космической станции в НФ создан режиссером Стэнли Кубриком. В его фильме “2001: Космическая одиссея” (сценарий и книга Артура Кларка) показывалась большая кольцевая станция, вращающаяся вокруг своей оси и создающая таким образом искусственную гравитацию.

Наибольший срок пребывания человека на космической станции - 437,7 дней. Рекорд поставлен Валерием Поляковым на станции “Мир” в 1994-1995.

Советские станции “Салют” первоначально должны были носить имя “Заря”, однако оно было оставлено для следующего подобного проекта, которым, в конце концов, стал функционально-грузовой блок МКС.

В одной из экспедиций на МКС появилась традиция вешать на стену жилого модуля три купюры - 50 рублей, доллар и евро. На счастье.

На МКС был заключен первый в истории человечества космический брак - 10 августа 2003 года космонавт Юрий Маленченко, находясь на борту станции (она пролетала над Новой Зеландией) женился на Екатерине Дмитриевой (невеста была на Земле, в США).

* * *

МКС - самый крупный, дорогой и долгосрочный космический проект за всю историю человечества. Пока станция еще не достроена, ее стоимость можно оценить лишь приблизительно - свыше 100 миллиардов долларов. Критика в адрес МКС чаще всего сводится к тому, что на эти деньги можно осуществить сотни непилотируемых научных экспедиций к планетам Солнечной системы.

В подобных обвинениях есть доля правды. Однако это очень ограниченный подход. Во-первых, здесь не учитывается потенциальная прибыль от разработки новых технологий при создании каждого нового модуля МКС - а ведь ее приборы действительно стоят на переднем крае науки. Их модификации могут быть использованы в повседневной жизни и способны принести гигантский доход.

Нельзя забывать о том, что благодаря программе МКС человечество получает возможность сохранить и преумножить все драгоценные технологии и навыки пилотируемых полетов в космос, которые были добыты во второй половине 20 века за неимоверную цену. В “космической гонке” СССР и США потрачены бешеные деньги, погибло множество людей - все это может оказаться напрасным, если мы прекратим двигаться в том же направлении.

Была запущена в космическое пространство в 1998 году. На текущий момент вот уже почти семь тысяч суток денно и нощно лучшие умы человечества трудятся над решением сложнейших загадок в условиях невесомости.

Космическое пространство

Каждый человек, хотя бы раз увидевший этот уникальный объект, задавался логичным вопросом: какая высота орбиты международной космической станции? Вот только ответить на него односложно нельзя. Высота орбиты международной космической станции МКС зависит от многих факторов. Рассмотрим их подробнее.

Орбита МКС вокруг Земли снижается из-за воздействия разреженной атмосферы. Скорость уменьшается, соответственно, уменьшается и высота. Как снова устремиться вверх? Высота орбиты может меняться при помощи двигателей кораблей, которые пристыковываются к ней.

Различные высоты

За весь срок космической миссии было зарегистрировано несколько основных значений. Еще в феврале 2011 году высота орбиты МКС составляла 353 км. Все расчеты производятся по отношению к уровню моря. Высота орбиты МКС в июне того же года увеличилась до трехсот семидесяти пяти километров. Но и это был далеко не предел. Всего через две недели работники НАСА с удовольствием отвечали журналистам на вопрос «Какая высота орбиты МКС на текущий момент?» - триста восемьдесят пять километров!

И это не предел

Высота орбиты МКС все равно была недостаточна для сопротивления природному трению. Инженеры пошли на ответственный и очень рискованный шаг. Высота орбиты МКС должна была быть повышена до четырехсот километров. Но это событие случилось несколько позже. Проблема состояла в том, что только корабли поднимали МКС. Высота орбиты была ограничена для шаттлов. Лишь со временем ограничение было упразднено для экипажа и МКС. Высота орбиты с 2014 года превышала 400 километров над уровнем моря. Максимальное среднее значение было зафиксировано в июле и составило 417 км. В целом корректировки высоты проводятся постоянно для фиксации самого оптимального маршрута.

История создания

Еще в далеком 1984 г. правительство США вынашивало планы о необходимости запуска в ближайшем космосе масштабного научного проекта. В одиночку осуществить такое грандиозное строительство даже американцам было достаточно затруднительно и к разработке были подключены Канада и Япония.

В 1992 г. в кампанию была включена Россия. В начале девяностых в Москве планировали масштабный проект «Мир-2». Но экономические проблемы не дали осуществиться грандиозным планам. Постепенно количество стран-участников выросло до четырнадцати.

Бюрократические проволочки заняли более трех лет. Лишь в 1995 г. был принят эскиз станции, а еще через год - конфигурация.

Двадцатое ноября 1998 года стало выдающимся днем в истории всемирной космонавтики - первый блок был успешно доставлен на орбиту нашей планеты.

Сборка

МКС гениальна по своей простоте и функциональности. Станция состоит из независимых блоков, которые соединяются между собой как большой конструктор. Невозможно посчитать и точную стоимость объекта. Каждый новый блок изготавливается в отдельной стране и, конечно же, различается по цене. Всего таких частей можно присоединить огромное количество, таким образом, станция может постоянно обновляться.

Срок действия

В связи с тем, что блоки станции и их наполнение могут быть изменены и модернизированы неограниченное количество раз, МКС может долго бороздить просторы околоземной орбиты.

Первый тревожный звоночек прозвенел в 2011 году, когда из-за своей дороговизны была свернута программа «космический челнок».

Но страшного ничего не произошло. Грузы исправно доставлялись в космос другими кораблями. В 2012 к МКС даже успешно пристыковался частный челнок коммерческого назначения. Впоследствии аналогичное событие происходило неоднократно.

Угрозы для станции могут быть лишь политическими. Периодически официальные лица разных стран грозятся прекратить поддержку МКС. Сначала планы поддержния были расписаны до 2015 г., потом до 2020-го. На сегодняшний день ориентировочно существует договоренность поддерживать станцию до 2027 года.

А пока политики спорят между собой, МКС в 2016 году сделала стотысячный виток вокруг планеты, который оригинально назвали «Юбилейный».

Электричество

Сидеть в темноте, конечно, интересно, но иногда надоедает. На МКС каждая минута на вес золота, поэтому инженеры были крепко озадачены необходимостью обеспечения экипажа бесперебойной электрикой.

Было предложено множество различных идей, и в конце концов сошлись на том, что лучше солнечных батарей в космосе ничего быть не может.

При реализации проекта российская и американская сторона пошли разными путями. Так, генерация электроэнергии первой страны производится для системы в 28 вольт. Напряжение в американском блоке - 124 В.

За день МКС делает множество витков вокруг Земли. Один оборот - примерно полтора часа, сорок пять минут из которых проходят в тени. Конечно же, в это время генерация от солнечных панелей невозможна. Станцию питают никель-водородные аккумуляторные батареи. Срок работы такого устройства около семи лет. Последний раз их меняли в далеком 2009-м, так что очень скоро инженерами будет осуществлена долгожданная замена.

Устройство

Как ранее было написано, МКС представляет собой огромный конструктор, части которого легко соединяются между собой.

По состоянию на март 2017 года станция имеет четырнадцать элементов. Россия поставила пять блоков, названных «Заря», «Поиск», «Звезда», «Рассвет» и «Пирс». Американцы своим семи частям дали такие имена: «Юнити», «Дестини», «Транквилити», «Квест», «Леонардо», «Купола» и «Гармония». Страны Европейского Союза и Япония пока имеют в своем активе по одному блоку: «Коламбус» и «Кибо».

Части постоянно меняются в зависимости от поставленных перед экипажем задач. На подходе еще несколько блоков, которые значительно усилят исследовательские возможности членов экипажа. Наиболее интересны, конечно же, лабораторные модули. Часть из них имеют полную герметичность. Таким образом, в них можно исследовать абсолютно все, вплоть до инопланетных живых существ, без риска заражения для экипажа.

Другие блоки предназначены для генерации необходимых сред для нормальной жизнедеятельности человека. Третьи позволяют беспрепятственно выходить в космос и совершать исследования, наблюдения или ремонты.

Часть блоков не несут исследовательской нагрузки и используются в качестве хранилищ.

Проводимые исследования

Многочисленные исследования - собственно то, ради чего в далеких девяностых политики решили отправить в космос конструктор, стоимость которого на сегодняшний день оценивается более чем в двести миллиардов долларов. За эти деньги можно купить десяток стран и получить небольшое море в подарок.

Так вот, МКС имеет такие уникальные возможности, которых нет ни у одной земной лаборатории. Первое - наличие безграничного вакуума. Второе - фактическое отсутствие гравитации. Третье - опаснейшие не испорченные преломлением в земной атмосфере.

Исследователей хлебом не корми, а дай что-то поизучать! Они с радостью выполняют возложенные не них обязанности, даже невзирая на смертельный риск.

Больше всего ученых интересует биология. В эту сферу входит биотехнологии и медицинские исследования.

Другие ученые частенько забывают про сон, исследуя физические силы внеземного пространства. Материалы, квантовая физика - лишь часть исследований. Любимое занятие по откровениям многих - тестировать различные жидкости в условиях невесомости.

Опыты с вакуумом, вообще, могут проводиться вне блоков, прямо в открытом космосе. Земные ученые могут лишь по-хорошему завидовать, наблюдая за экспериментами по видеосвязи.

Любой человек на Земле отдал бы все за один выход в космос. Для работников станции это практически рутинное занятие.

Выводы

Несмотря на недовольные возгласы многих скептиков о бесперспективности проекта, ученые МКС сделали множество интереснейших открытий, которые позволили иначе посмотреть и на космос в целом, и на нашу планету.

Ежедневно эти смелые люди получают огромную дозу радиации, и все ради научных исследований, которые дадут человечеству невиданные ранее возможности. Можно лишь восхищаться их работоспособностью, смелостью и целеустремленностью.

МКС достаточно крупный объект, который можно увидеть и с поверхности Земли. Существует даже целый сайт, на котором можно ввести координаты своего города и система точно подскажет, в какое время можно будет попробовать лицезреть станцию, находясь в шезлонге прямо на своем балконе.

Конечно, у космической станции множество противников, но поклонников гораздо больше. А это значит, что МКС будет уверенно держаться на своей орбите в четыреста километров над уровнем моря и еще не раз покажет заядлым скептикам, как они ошибались в своих прогнозах и предсказаниях.

Веб камера на Международной Космической Станции

Если картинки нет, предлагаем Вам посмотреть NASA TV, это интересно

Live broadcasting by Ustream

Ибуки (яп. いぶき Ибуки, Дыхание) — спутник дистанционного зондирования Земли, первый в мире космический аппарат, чьей задачей является мониторинг парниковых газов. Также спутник известен как The Greenhouse Gases Observing Satellite («Спутник для мониторинга парниковых газов»), сокращённо GOSAT. «Ibuki» оборудован инфракрасными датчиками, которые определяют плотность углекислого газа и метана в атмосфере. Всего на спутнике установлено семь различных научных приборов. «Ibuki» разработан японским космическим агентством JAXA и запущен 23 января 2009 года с космодрома Танэгасима. Запуск был осуществлён с помощью японской ракеты-носителя H-IIA.

Видео трансляция жизни на космической станции включает в себя внутренний вид модуля, в том случае когда космонавты находятся на дежурстве. Видео сопровождается живым звуком переговоров между МКС и ЦУП. Телевидение доступно только тогда, когда МКС находится в контакте с землёй на высокоскоростной связи. При потере сигнала зрители могут увидеть тестовую картинку или графическую карту мира, на которой показывается местонахождение станции на орбите в реальном времени. Из-за того, что МКС вращается вокруг Земли каждые 90 минут, восход или закат солнца происходят каждые 45 минут. Когда МКС находится в темноте, внешние камеры могут отображать черноту, но могут также показывать захватывающий вид городских огней внизу.

Международная космическая станция , сокр. МКС (англ. International Space Station, сокр. ISS) — пилотируемая орбитальная станция, используемая как многоцелевой космический исследовательский комплекс. МКС — совместный международный проект, в котором участвуют 15 стран: Бельгия, Бразилия,Германия, Дания, Испания, Италия, Канада, Нидерланды, Норвегия, Россия, США, Франция, Швейцария, Швеция, Япония.Управление МКС осуществляется: российским сегментом — из Центра управления космическими полётами в Королёве, американским сегментом — из Центра управления полётами в Хьюстоне. Между Центрами идёт ежедневный обмен информацией.

Средства связи
Передача телеметрии и обмен научными данными между станцией и Центром управления полётом осуществляется с помощью радиосвязи. Кроме того, средства радиосвязи используются во время операций по сближению и стыковке, их применяют для аудио- и видеосвязи между членами экипажа и с находящимися на Земле специалистами по управлению полётом, а также родными и близкими космонавтов. Таким образом, МКС оборудована внутренними и внешними многоцелевыми коммуникационными системами.
Российский сегмент МКС поддерживает связь с Землёй напрямую с помощью радиоантенны «Лира», установленной на модуле «Звезда». «Лира» даёт возможность использовать спутниковую систему ретрансляции данных «Луч». Эту систему использовали для сообщения со станцией «Мир», но в 1990-х годах она пришла в упадок и в настоящее время не применяется. Для восстановления работоспособности системы в 2012 году был запущен «Луч-5А». На начало 2013 года запланирована установка на российский сегмент станции специализированной абонентской аппаратуры после чего он станет одним из основных абонентов спутника «Луч-5А». Также ожидаются запуски ещё 3 спутников «Луч-5Б», «Луч-5В» и «Луч-4».
Другая российская система связи, «Восход-М», обеспечивает телефонную связь между модулями «Звезда», «Заря», «Пирс», «Поиск» и американским сегментом, а также УКВ-радиосвязь с наземными центрами управления, используя для этого внешние антенны модуля «Звезда».
В американском сегменте для связи в S-диапазоне (передача звука) и Ku-диапазоне (передача звука, видео, данных) применяются две отдельные системы, расположенные на ферменной конструкции Z1. Радиосигналы от этих систем передаются на американские геостационарные спутники TDRSS, что позволяет поддерживать практически непрерывный контакт с центром управления полётами в Хьюстоне. Данные с Канадарм2, европейского модуля «Коламбус» и японского «Кибо» перенаправляются через эти две системы связи, однако американскую систему передачи данных TDRSS со временем дополнят европейская спутниковая система (EDRS) и аналогичная японская. Связь между модулями осуществляется по внутренней цифровой беспроводной сети.
Во время выходов в открытый космос космонавты используют УКВ-передатчик дециметрового диапазона. УКВ-радиосвязью также пользуются во время стыковки или расстыковки космические аппараты «Союз», «Прогресс», HTV, ATV и «Спейс шаттл» (правда шаттлы применяют также передатчики S- и Ku-диапазонов посредством TDRSS). С её помощью эти космические корабли получают команды от центра управления полётами или от членов экипажа МКС. Автоматические космические аппараты оборудованы собственными средствами связи. Так, корабли ATV используют во время сближения и стыковки специализированную систему Proximity Communication Equipment (PCE), оборудование которой располагается на ATV и на модуле «Звезда». Связь осуществляется через два полностью независимых радиоканала S-диапазона. PCE начинает функционировать, начиная с относительных дальностей около 30 километров, и отключается после стыковки ATV к МКС и перехода на взаимодействие по бортовой шине MIL-STD-1553. Для точного определения относительного положения ATV и МКС используется система лазерных дальномеров, установленных на ATV, делающая возможной точную стыковку со станцией.
Станция оборудована примерно сотней портативных компьютеров ThinkPad от IBM и Lenovo, моделей A31 и T61P. Это обычные серийные компьютеры, которые однако были доработаны для применения в условиях МКС, в частности, в них переделаны разъёмы, система охлаждения, учтено используемое на станции напряжение 28 Вольт, а также выполнены требования безопасности для работы в невесомости. С января 2010 года на станции для американского сегмента организован прямой доступ в Интернет. Компьютеры на борту МКС соединены с помощью Wi-Fi в беспроводную сеть и связаны с Землёй со скоростью 3 Мбит/c на закачку и 10 Мбит/с на скачивание, что сравнимо с домашним ADSL-подключением.

Высота орбиты
Высота орбиты МКС постоянно изменяется. За счет остатков атмосферы происходит постепенное торможение и снижение высоты. Все приходящие корабли помогают поднять высоту за счет своих двигателей. Одно время ограничивались компенсацией снижения. В последнее время высота орбиты неуклонно повышается. 10 фев 2011 — Высота полета Международной Космической Станции составила порядка 353 километров над уровнем моря. 15 июня 2011 увеличилась на 10,2 километра и составила 374,7 километра. 29 июня 2011 высота орбиты составила 384,7 километра. Для того, чтобы влияние атмосферы снизить до минимума, станцию надо было поднять до 390—400 км, но на такую высоту не могли подниматься американские шаттлы. Поэтому станция удерживалась на высотах 330—350 км путем периодической коррекции двигателями. В связи с окончанием программы полёта шаттлов, это ограничение снято.

Часовой пояс
На МКС используется всемирное координированное время (UTC), оно практически точно равноотстоит от времён двух центров управления в Хьюстоне и Королёве. Через каждые 16 восходов/закатов закрываются иллюминаторы станции, чтобы создать иллюзию ночного затемнения. Команда обычно просыпается в 7 часов утра (UTC), экипаж обычно работает около 10 часов каждый будний день и около пяти часов каждую субботу. Во время визитов шаттлов экипаж МКС обычно следует Mission Elapsed Time (MET) — общему полётному времени шаттла, которое не привязано к конкретному часовому поясу, а считается исключительно от времени старта космического челнока. Экипаж МКС заранее сдвигает время своего сна перед прибытием челнока и возвращается к прежнему режиму после его отбытия.

Атмосфера
На станции поддерживается атмосфера, близкая к земной. Нормальное атмосферное давление на МКС — 101,3 килопаскаля, такое же, как на уровне моря на Земле. Атмосфера на МКС не совпадает с атмосферой, поддерживаемой в шаттлах, поэтому после пристыковки космического челнока происходит выравнивание давлений и состава газовой смеси по обе стороны шлюза. Примерно с 1999 по 2004 годы в NASA существовал и разрабатывался проект IHM (Inflatable Habitation Module), в котором планировалось использование давления атмосферы на станции для развертывания и создания рабочего объёма дополнительного обитаемого модуля. Корпус этого модуля предполагалось изготовить из кевларовой ткани с герметичной внутренней оболочкой из газонепроницаемого синтетического каучука. Однако, в 2005 годупо причине нерешенности большинства проблем, поставленных в проекте (в частности, проблемы защиты от частиц космического мусора), программа IHM была закрыта.

Микрогравитация
Притяжение Земли на высоте орбиты станции составляет 90 % от притяжения на уровне моря. Состояние невесомости обусловлено постоянным свободным падением МКС, которое, согласно принципу эквивалентности, равнозначно отсутствию притяжения. Среда на станции зачастую описывается как микрогравитация, из-за четырёх эффектов:

Тормозящее давление остаточной атмосферы.

Вибрационные ускорения из-за работы механизмов и перемещения экипажа станции.

Коррекция орбиты.

Неоднородность гравитационного поля Земли приводит к тому, что разные части МКС притягиваются к Земле с разной силой.

Все эти факторы создают ускорения, достигающие значений 10-3…10-1 g.

Наблюдение за МКС
Размеры станции достаточны для её наблюдения невооружённым глазом с поверхности Земли. МКС наблюдается как достаточно яркая звезда, довольно быстро идущая по небу приближенно с запада на восток (угловая скорость около 1 градуса в секунду.) В зависимости от точки наблюдения, максимальное значение её звёздной величины, может принимать значение от?4 до 0. Европейское космическое агентство, совместно с сайтом «www.heavens-above.com», предоставляет возможность всем желающим узнать расписание пролётов МКС над определённым населённым пунктом планеты. Зайдя на страницу сайта, посвящённую МКС, и введя латиницей название интересующего города, можно получить точное время и графическое изображение траектории полёта станции над ним, на ближайшие дни. Также расписание пролетов можно посмотреть на www.amsat.org. Траекторию полёта МКС в реальном времени можно увидеть на сайте Федерального Космического Агентства. Также можно использовать программу «Heavensat» (или «Orbitron»).

Состав MKC (Заря — Колумбус)

Основные модули МКС Усл. обозн. Старт Стыковка
ФГБ 20.11.1998 -
NODE1 04.12.1998 07.12.1998
Служебный модуль «Звезда» СМ 12.07.2000 26.07.2000
LAB 08.02.2001 10.02.2001
Шлюзовая камера «Квест» A/L 12.07.2001 15.07.2001
Стыковочный отсек «Пирс» СО1 15.09.2001 17.09.2001
Соединительный модуль «Гармония» (Node2) NODE2 23.10.2007 26.10.2007
COL 07.02.2008 12.02.2008
Японский грузовой модуль (1-й доставленный элемент модуля «Кибо») ELM-PS 11.03.2008 14.03.2008
Японский научно-исследовательский модуль «Кибо» JEM 01.06.2008 03.06.2008
Малый исследовательский модуль «Поиск» МИМ2 10.11.2009 12.11.2009
Жилой модуль «Транквилити» («Спокойствие») NODE3 08.02.2010 12.02.2010
Обзорный модуль «Купола» cupola 08.02.2010 12.02.2010
Малый исследовательский модуль «Рассвет» МИМ1 14.05.2010 18.05.2010
Корабли (грузовые, пилотируемые)
Грузовой корабль «Прогресс М-07M» ТКГ 10.09.2010 12.09.2010
Пилотируемый корабль «Союз ТМА-М» ТМА-М 08.10.2010 10.10.2010
Пилотируемый корабль «Союз ТМА-20» ТМА 15.12.2010 17.12.2010
Грузовой корабль HTV2 HTV2 22.01.2011 27.01.2011
Грузовой корабль «Прогресс М-09M» ТКГ 28.01.2011 30.01.2011
Дополнительные модули и устройства МКС
Модуль корневого сегмента и гиродинов на NODE1 Z1 13.10.2000
Энергетический модуль (секция СБ АС) на Z1 Р6 04-08.12.2000
Манипулятор на модуле LAB (Canadarm) SSRMS 22.04.2001
Ферма S0 S0 11-17.04.2002
Подвижная сервисная система MSS 11.06.2002
Ферма S1 S1 10.10.2002
Устройство для перемещения оборудования и экипажа CETA 10.10.2002
Ферма P1 P1 26.11.2002
Устройство B системы перемещения оборудования и экипажа CETA (B) 26.11.2002
Ферма Р3/Р4 P3/P4 12.09.2006
Ферма Р5 P5 13.12.2006
Ферма S3/S4 S3/S4 12.06.2007
Ферма S5 S5 11.08.2007
Ферма S6 S6 18.03.2009

Конфигурация МКС

Функционально-грузовой блок «Заря»

Развертывание МКС началось запуском 20 ноября 1998 года (09:40:00 ДМВ) с помощью российской ракеты-носителя «Протон» функционально-грузового блока (ФГБ) «Заря», также созданного в России.

Функционально-грузовой блок «Заря» является первым элементом Международной космической станции (МКС). Он разработан и изготовлен ГКНПЦ имени М.В. Хруничева (г. Москва, Россия) в соответствии с контрактом, заключенным с генеральным субподрядчиком по проекту МКС — компанией «Боинг» (г. Хьюстон, штат Техас, США). С этого модуля начинается сборка МКС на околоземной орбите. На начальной стадии сборки ФГБ обеспечивает управление полетом связки модулей, электропитание, связь, прием, хранение и перекачку топлива.

Схема функционально-грузового блока «Заря»

Параметр Значение
Масса на орбите 20260 кг
Длина по корпусу 12990 мм
Максимальный диаметр 4100 мм
Объем герметичных отсеков 71.5 куб.м
Размах солнечных батарей 24400 мм
28 кв.м
Гарантированная среднесуточная мощность электроснабжения напряжением 28 в 3 кВт
Мощность электроснабжения американского сегмента до 2 кВт
Масса заправляемого топлива до 6100 кг
Высота рабочей орбиты 350-500 км
15 лет

Компоновка ФГБ включает в себя приборно-грузовой отсек (ПГО) и герметичный адаптер (ГА), предназначенный для размещения бортовых систем, обеспечивающих механическую стыковку с другими модулями МКС и прибывающими на МКС кораблями. ГА отделен от ПГО герметичной сферической переборкой, в которой имеется люк диаметром 800 мм. На внешней поверхности ГА имеется специальный узел для механического захвата ФГБ манипулятором корабля «Шаттл». Герметичный объем ПГО составляет 64,5 куб.м, ГА — 7,0 куб.м. Внутреннее пространство ПГО и ГА разделено на две зоны: приборную и жилую. В приборной зоне размещены блоки бортовых систем. Жилая зона предназначена для работы экипажа. В ней находятся элементы систем контроля и управления бортовым комплексом, а также аварийного оповещения и предупреждения. Приборная зона отделена от жилой зоны панелями интерьера.

ПГО функционально разделен на три отсека: ПГО- 2 — это коническая секция ФГБ, ПГО-З — примыкающая к ГА цилиндрическая секция, ПГО-1 — цилиндрическая секция между ПГО-2 и ПГО-З.

Соединительный модуль «Юнити»



Первым изготовленным в США элементом Международной космической станции является модуль Node 1 («первый узловой»), называемый также Unity («Единство» или «Единение»).

Модуль Node 1 был изготовлен на предприятии The Boeing Co. в г.Хантсвилл (Алабама).

В модуле установлено свыше 50000 деталей, 216 трубопроводов перекачки жидкостей и газов, 121 кабель внутреннего и наружного монтажа общей длиной порядка 10 км.

Модуль доставлен и установлен экипажем шатла Индевор (STS-88) 7 декабря 1998 года. Состав экипажа: командир Роберт Кабана, пилот Фредерик Стёркоу, специалисты полета Джерри Росс, Нэнси Кёрри, Джеймс Ньюман и Сергей Крикалев.

Модуль «Unity» — выполненная из алюминия цилиндрическая конструкция с шестью люками для подсоединения других компонентов станции — четыре из которых (радиальные) представляют собой закрытые люками проемы с рамами, а два торцевых оснащены замками, к которым присоединены стыковочные адаптеры, имеющие по два осевых стыковочных узла., образует коридор, соединяющий жилые и рабочие помещения Международной космической станции. Этот узел, длиной 5,49 м и диаметром 4,58 м, соединен с функциональным грузовым блоком «Заря».

Кроме подсоединения к модулю «Заря», этот узел служит коридором, соединяющим американский лабораторный модуль, американский обитаемый модуль (жилые отсеки) и воздушный шлюз.

Через модуль «Unity» проходят важные системы и коммуникации, такие как трубопроводы подачи жидкостей, газов, средства регулирования среды, системы жизнеобеспечения, электроснабжения и передачи данных.

В Космическом центре им.Кеннеди Unity был оснащен двумя герметичными стыковочными адаптерами PMA (Pressurized Mating Adapter), имеющими вид несимметричных конических коронок. Адаптер PMA-1 обеспечит стыковку американских и российских компонентов станции, PMA-2 – стыковку к ней кораблей Space Shuttle. В адаптерах размещены компьютеры, обеспечивающие функции контроля и управления модулем Unity, а также передачу данных, речевой информации и видеосвязь с хьюстонским ЦУПом на первых этапах монтажа МКС, дополняя российские системы связи, установленные в модуле «Заря». Элементы адаптеров построены на предприятии компании Boeing в г.Хантингтон-Бич, шт.Калифорния.

Unity с двумя адаптерами в пусковой конфигурации имеет длину 10.98 м и массу около 11500 кг.

Проектирование и изготовление модуля Unity обошлось примерно в 300 млн $.

Служебный модуль «Звезда»


Служебный модуль (СМ) «Звезда» был выведен на околоземную орбиту ракетой-носителем «Протон» 12.07.2000г. (07:56:36 ДМВ) и 26.07.2000г. пристыкован к функционально-грузовому блоку (ФГБ) МКС.

Конструктивно СМ «Звезда» состоит из четырех отсеков: трех герметичных – переходного отсека (ПхО), рабочего отсека (РО) и промежуточной камеры (ПрК), а также негерметичного агрегатного отсека (АО), в котором размещена объединенная двигательная установка (ОДУ). Корпус герметичных отсеков выполнен из алюминиево-магниевого сплава и представляет собой сварную конструкцию, состоящую из блоков цилиндрической, конической и сферической формы.

Переходный отсек предназначен для обеспечения перехода членов экипажа между СМ и другими модулями МКС. Он также выполняет функции шлюзового отсека при выходе членов экипажа в открытый космос, для чего на боковой крышке имеется клапан сброса давления.

По форме ПхО представляет собой сочетание сферы диаметром 2.2 м и усеченного конуса с диаметрами оснований 1.35 м и 1.9 м. Длина ПхО – 2.78 м, герметичный объем – 6.85 м3. Конусной частью (большим диаметром) ПхО крепится к РО. На сферической части ПхО установлены три гибридных пассивных стыковочных агрегата ССВП-М Г8000 (один осевой и два боковых). К осевому узлу на ПхО стыкуется ФГБ «Заря». На верхнем узле ПхО планируется установка Научно-энергетической платформы (НЭП). К нижнему стыковочному узлу ПхО должен сначала причалить Стыковочный отсек №1, а затем – Универсальный стыковочный модуль (УСМ).

Основные технические характеристики

Параметр Значение
Стыковочные узлы 4 шт.
Иллюминаторы 13 шт.
Масса модуля на этапе выведения 22776 кг
Масса на орбите после отделения от РН 20295 кг
Габариты модуля:
длина с обтекателем и промежуточным отсеком 15,95 м
длина без обтекателя и промежуточного отсека 12,62 м
длина по корпусу 13.11 м
ширина с раскрытой солнечной батареей 29,73 м
максимальный диаметр 4.35 м
объем герметичных отсеков 89.0 м3
внутренний объем с оборудованием 75,0 м3
объем обитания экипажа 46.7 м3
Обеспечение жизнедеятельности экипажа до 6 человек
Размах солнечных батарей 29.73 м
Площадь фотоэлектрических элементов 76 м2
Максимальная выходная мощность солнечных батарей 13.8 кВт
Длительность функционирования на орбите 15 лет
Система электроснабжения:
рабочее напряжение, В 28
мощность солнечных батарей, кВт 10
Двигательная установка:
маршевые двигатели, кгс 2?312
двигатели ориентации, кгс 32?13,3
масса окислителя (тетроксида азота), кг 558
масса горючего (НДМГ), кг 302

Основные функции:

  • обеспечение условий работы и отдыха экипажа;
  • управление работой основных частей комплекса;
  • снабжение комплекса электроэнергией;
  • двустороннюю радиосвязь экипажа с наземным комплексом управления (НКУ);
  • прием и передача телевизионной информации;
  • передача на НКУ телеметрической информации о состоянии экипажа и бортовых систем;
  • прием на борту информации по управлению;
  • ориентация комплекса относительно центра масс;
  • коррекция орбиты комплекса;
  • сближение и стыковка других объектов комплекса;
  • поддержание заданного температурно-влажностного режима жилого объема, элементов конструкции и оборудования;
  • выход в открытое пространство космонавтов, выполнение работ по техническому обслуживанию и ремонту внешней поверхности станции;
  • проведение научных и прикладных исследований и экспериментов с использованием доставляемой целевой аппаратуры;
  • возможность осуществлять двустороннюю бортовую связь всех модулей комплекса «Альфа».

На наружной поверхности ПхО имеются кронштейны, на которых закреплены поручни, три комплекта антенн (АР-ВКА, 2АР-ВКА и 4АО-ВКА) системы «Курс» для трех стыковочных узлов, стыковочные мишени, агрегаты СТР, блок дозаправки ДУ, телекамера, бортовые огни и другое оборудование. Наружная поверхность закрыта панелями ЭВТИ и противометеоритными экранами. В ПхО имеется четыре иллюминатора.

Рабочий отсек предназначен для размещения основной части бортовых систем и оборудования СМ, для жизни и работы экипажа.

Корпус РО состоит из двух цилиндров разных диаметров (2.9 м и 4.1 м), соединенных между собой коническим переходником. Длина цилиндра малого диаметра – 3.5 м, большого – 2.9 м. Переднее и заднее днища – сферические. Общая длина РО – 7.7 м, герметичный объем с оборудованием – 75.0 м3, объем обитания экипажа – 35.1 м3. Панели интерьера отделяют жилую зону от приборной, а также от корпуса РО.

В РО имеется 8 иллюминаторов.

Жилые помещения РО оборудованы средствами обеспечения жизнедеятельности экипажа. В зоне малого диаметра РО находится центральный пост управления станцией с блоками контроля и аварийно-предупредительными пультами. В зоне большого диаметра РО имеются две персональные каюты (объемом 1.2 м3 каждая), санитарный отсек с умывальником и ассенизационным устройством (объемом 1.2 м3), кухня с холодильником-морозильником, рабочий стол со средствами фиксации, медицинская аппаратура, тренажеры для физических упражнений, небольшая шлюзовая камера для отделения контейнеров с отходами и малых КА.

Снаружи корпус РО закрыт многослойной экранно-вакуумной теплоизоляцией (ЭВТИ). На цилиндрических частях установлены радиаторы, которые выполняют также функции противометеоритных экранов. Незащищенные радиаторами участки закрыты углепластиковыми экранами сотовой конструкции.

На внешней поверхности РО установлены поручни, которыми члены экипажа могут пользоваться для перемещения и фиксации во время работы в открытом космосе.

Снаружи малого диаметра РО установлены датчики системы управления движением и навигацией (СУДН) для ориентации по Солнцу и Земле, четыре датчика системы ориентации СБ и другое оборудование.

Промежуточная камера предназначена для обеспечения перехода космонавтов между СМ и кораблями «Союз» или «Прогресс», пристыкованными к кормовому стыковочному агрегату.

ПрК по форме представляет собой цилиндр диаметром 2.0 м и длиной 2.34 м. Внутренний объем – 7.0 м3.

ПрК снабжена одним пассивным стыковочным агрегатом, расположенным по продольной оси СМ. Узел предназначен для стыковок грузовых и транспортных кораблей, в том числе российских кораблей «Союз ТМ», «Союз ТМА», «Прогресс М» и «Прогресс М2», а также европейского автоматического корабля ATV. Для внешнего наблюдения в ПрК имеются два иллюминатора, а снаружи на ней закреплена телекамера.

Агрегатный отсек предназначен для размещения агрегатов объединенной двигательной установки (ОДУ).

АО имеет цилиндрическую форму, с торца закрывается донным экраном из ЭВТИ. Наружная поверхность АО закрыта противометеоритным защитным кожухом и ЭВТИ. На наружной поверхности установлены поручни и антенны, имеются люки для обслуживания оборудования, расположенного внутри АО.

На корме АО имеется два корректирующих двигателя, а на боковой поверхности – четыре блока двигателей ориентации. Снаружи на заднем шпангоуте АО закреплена штанга с остронаправленной антенной (ОНА) бортовой радиотехнической системы «Лира». Кроме того, на корпусе АО стоят три антенны системы «Курс», четыре антенны радиотехнической системы управления и связи, две антенны телевизионной системы, шесть антенн системы телефонно-телеграфной связи, антенны аппаратуры радиоконтроля орбиты.

Также на АО закреплены датчики СУДН для ориентации по Солнцу, датчики системы ориентации СБ, бортовые огни и пр.

Внутренняя компоновка Служебного модуля:

1 – переходный отсек; 2 – переходный люк; 3 – аппаратура стыковки в ручном режиме; 4 – противогаз; 5 – блоки очистки атмосферы; 6 – твердотопливные генераторы кислорода; 7 – каюта; 8 – отсек санитарного устройства; 9 – промежуточная камера; 10 – переходный люк; 11 – огнетушитель; 12 – агрегатный отсек; 13 – место установки бегущей дорожки; 14 – пылесборник; 15 – стол; 16 – место установки велоэргометра; 17 – иллюминаторы; 18 – центральный пост управления.

Состав служебного оборудования СМ «Звезда»:

бортовой комплекс управления в составе:

— системы управления движением (СУД);
— бортовой вычислительной системы;
— бортового радиокомплекса;
— системы бортовых измерений;
— системы управления бортовым комплексом (СУБК);
— оборудования телеоператорного режима управления (ТОРУ);

система электропитания (СЭП);

объединенная двигательная установка (ОДУ);

система обеспечения тепловых режимов (СОТР);

система обеспечения жизнедеятельности (СОЖ);

средства медицинского обеспечения.

Лабораторный модуль «Дестини»


9 февраля 2001 года экипаж космического корабля шаттл «Атлантис» STS-98 доставил и пристыковал к станции лабораторный модуль "Дестини " («Судьба»).

Американский научный модуль «Дестини» состоит из трёх цилиндрических секций и двух оконечных урезанных конусов, которые содержат герметичные люки, используемые экипажем для входа в модуль и выхода из него. «Дестини» пристыкован к переднему стыковочному узлу модуля «Юнити».

Научное и вспомогательное оборудование внутри модуля «Дестини» смонтировано в стандартных блоках полезной нагрузки ISPR (International Standard Payload Racks). Всего «Дестини» содержит 23 блока ISPR - по шесть на правом, на левом борту и потолке, и пять на полу.

«Дестини» имеет систему жизнеобеспечения, которая обеспечивает электроснабжение, очистку воздуха, а также контроль температуры и влажности в модуле.

В герметичном модуле астронавты могут выполнять исследования в различных областях научных знаний: в медицине, технологии, биотехнологии, физике, материаловедении, и изучении Земли.

Модуль изготовлен американской компанией «Боинг».

Универсальная шлюзовая камера «Квест»


Универсальная шлюзовая камера «Квест» была доставлена к МКС космическим кораблем «Шаттл» «Атлантис» STS-104 15 июля 2001 года и с помощью дистанционного манипулятора станции «Канадарм 2» была извлечена из грузового отсека «Атлантиса», перенесена и пристыкована к причалу американского модуля NODE-1 «Юнити».

Универсальная шлюзовая камера «Квест» предназначена для обеспечения выходов в открытый космос экипажей МКС с использованием как американских скафандров, так и российских скафандров «Орлан».

До установки этой шлюзовой камеры выходы в открытый космос производились либо через переходной отсек (ПхО) служебного модуля «Звезда» (в российских скафандрах), либо через Space Shuttle (в американских скафандрах).

После установки и приведения в рабочее состояние шлюзовая камера стала одной из основных систем для обеспечения выхода в открытый космос и возврата на МКС и позволила применять любую из существующих систем скафандров или обе одновременно.

Основные технические характеристики

Шлюзовая камера представляет собой герметичный модуль, состоящий из двух основных отсеков (состыкованных своими торцами при помощи соединительной перегородки и люка): отсека экипажа, через который астронавты выходят из МКС в открытый космос, и отсека оборудования, где хранятся агрегаты и скафандры для обеспечения ВКД, а также так называемые агрегаты для ночного «вымывания», которые используются в ночь перед выходом в открытый космос для вымывания азота из крови астронавта в процессе понижения атмосферного давления. Эта процедура позволяет избежать проявления признаков декомпрессии после возврата космонавта из открытого космоса и наддува отсека.

Отсек экипажа

высота – 2565 мм.

внешний диаметр – 1996 мм.

герметичный объем – 4.25 куб. м.

Основное оборудование:

люк для выхода в открытый космос диаметром 1016 мм;

пульт управления шлюзованием.

Отсек оборудования

Основные технические характеристики:

длина – 2962 мм.

внешний диаметр – 4445 мм.

герметичный объем – 29.75 куб. м.

Основное оборудование:

гермолюк для перехода в отсек оборудования;

гермолюк для перехода в МКС

две стандартные стойки со служебными системами;

аппаратура обслуживания скафандров и отладки оборудования для ВКД;

насос для откачивания атмосферы;

панель подключения интерфейсных разъемов;

Отсек экипажа представляет собой переработанную внешнюю шлюзовую камеру корабля Space Shuttle. Он оснащен системой освещения, наружными поручнями и интерфейсными разъемами UIA (Umbilical Interface Assembly) для подключения систем обеспечения. Разъемы UIA расположены на одной из стен отсека экипажа и предназначены для подачи воды, отвода жидких отходов и подачи кислорода. Разъемы используются также для обеспечения связи и электропитания скафандров и могут обслуживать одновременно два скафандра (как российских, так и американских).

Перед открытием люка отсека экипажа для выхода в открытый космос, давление в отсеке снижается сначала до 0,2 атм, а затем до нуля.

Внутри скафандра поддерживается атмосфера из чистого кислорода при давлении 0,3 атм для американского скафандра и 0,4 атм для российского.

Пониженное давление требуется для обеспечения достаточной подвижности скафандров. При более высоких давлениях скафандры становятся жесткими, и в них трудно работать в течение длительного времени.

Отсек оборудования оснащен служебными системами для выполнения операций по надеванию и снятию скафандров, а также для периодического проведения работ по их техническому обслуживанию.

В отсеке оборудования расположены устройства для поддержания атмосферы внутри отсека, аккумуляторные батареи, система электропитания и другие обеспечивающие системы.

Модуль «Квест» может обеспечить воздушную среду, с пониженным содержанием азота, в которой космонавты могут «ночевать» перед выходом в открытый космос, благодаря чему их кровоток очищается от излишнего содержания азота, что предотвращает кессонную болезнь во время работы в скафандре с воздухом насыщенным кислородом, и после работы, при изменении давления окружающей среды (давление в российских скафандрах «Орлан» — 0.4 атм, в американских EMU — 0.3 атм). Ранее, для подготовки к выходам в космос, чтобы очистить ткани тела от азота, использовался метод, при котором люди вдыхали чистый кислород в течение нескольких часов перед выходом.

В апреле 2006 года, командир экспедиции МКС-12 Уильям МакАртур, и бортинженер экспедиции МКС-13 Джеффри Уильямс, проверили новый метод подготовки к выходам в космос, «переночевав» таким образом, в шлюзе. Давление в камере было уменьшено от нормального — 1 атм. (101 килопаскалей или 14.7 фунтов на квадратный дюйм), до 0.69 атм. (70 кПа или 10.2 psi). Из-за ошибки сотрудника ЦУП, экипаж был разбужен на четыре часа раньше положенного срока, и тем не менее тест посчитали успешно пройденным. После этого данный метод, стал использоваться американской стороной на постоянной основе перед выходом в космос.

Модуль «Квест» был необходим американской стороне, потому что их скафандры не соответствовали параметрам российских шлюзовых камер — имели другие компоненты, другие настройки и другие соединительные крепления. До установки «Квеста» выходы в космос могли осуществляться из шлюзового отсека модуля «Звезда» только в скафандрах «Орлан». Американские EMU могли использоваться для выхода в космос только во время стыковыки их шаттла к МКС. В дальнейшем, подключение модуля «Пирс» добавило ещё один вариант использования «Орланов».

Модуль был присоединён 14 июля 2001 года экспедицией STS-104. Он был установлен на правый стыковочный порт модуля «Юнити» к единому механизму пристыковки (англ. CBM ).

Модуль содержит оборудование и разработан таким образом, чтобы работать со скафандрами обоих типов, однако в настоящее время (информация по состоянию на 2006 год!) способен функционировать только с американской стороной, потому что оборудование, необходимое для работы с российскими космическими костюмами, ещё не было запущено. Вследствие этого, когда у экспедиции МКС-9 возникли проблемы с американскими скафандрами, им пришлось пробираться на своё рабочее место окольным путём.

21 февраля 2005 года из-за неисправности модуля «Квест», вызванной, как сообщили СМИ, образовавшейся в шлюзе ржавчиной, космонавты временно осуществляли выходы в космос через модуль «Звезда»

Стыковочный отсек «Пирс»

Стыковочный отсек (СО) “Пирс”, являющийся элементом российского сегмента МКС, запущен в составе специализированного грузового корабля-модуля (ГКМ) “Прогресс М-СО1” 15 сентября 2001 года. 17 сентября 2001 года ГКМ “Прогресс М-СО1” состыковался с Международной космической станцией.

Стыковочный отсек «Пирс» разработан и изготовлен в РКК “Энергия” и имеет двойное назначение. Он может использоваться как шлюзовой отсек для выходов в открытый космос двух членов экипажа и служит дополнительным портом для стыковки с МКС пилотируемых кораблей типа “Союз ТМ” и автоматических грузовых кораблей типа “Прогресс М”.

Кроме этого, он обеспечивает возможность дозаправки баков PC МКС компонентами топлива, доставляемыми на грузовых транспортных кораблях.

Основные технические характеристики

Параметр Значение
Масса при запуске, кг 4350
Масса на орбите, кг 3580
Резервная масса доставляемых грузов, кг 800
Высота орбиты при сборке, км 350-410
Рабочая высота орбиты, км 410-460
Длина (со стыковочным агрегатам), м 4,91
Максимальный диамегр, м 2,55
Объем герметичного отсека, м? 13

Стыковочный отсек “Пирс” состоит из герметичного корпуса и установленных на нем аппаратуры, служебных систем и элементов конструкции, обеспечивающих выходы в открытый космос.

Гермокорпус отсека и силовой набор изготовлены из алюминиевых сплавов АМг-6, трубопроводы — из коррозионно-стойких сталей и титановых сплавов. Снаружи корпус закрыт панелями противометеоритной защиты толщиной 1 мм и экранновакуумной теплоизоляцией

Два стыковочных узла — активный и пассивный — расположены по продольной оси “Пирса”. Активный стыковочный узел предназначен для герметичного соединения со СМ “Звезда”. Пассивный стыковочный узел, расположенный с противоположной стороны отсека, предназначен для герметичного соединения с транспортными кораблями типа “Союз ТМ” и “Прогресс М”.

Снаружи отсека установлены четыре антенны аппаратуры измерения параметров относительного движения “Курс-А” используемой при стыковке СО к МКС, а также аппаратура системы “Курс-П”, обеспечивающей сближение и стыковку к отсеку транспортных кораблей.

В корпусе установлены два кольцевых шпангоута с люками для выхода в открытый космос. Оба люка имеют диаметр в свету 1000 мм. В каждой крышке имеется иллюминатор диаметром в свету 228 мм. Оба люка абсолютно равнозначны и могут использоваться в зависимости от того, с какой стороны “Пирса” удобнее проводить выход членов экипажа в открытый космос. Каждый люк рассчитан на 120 открываний. Для удобства работы космонавтов в открытом космосе вокруг люков имеются кольцевые поручни внутри и снаружи отсека.

Снаружи всех элементов корпуса отсека также установлены поручни для облегчения работы членов экипажа во время выходов.

Внутри СО “Пирс” расположены блоки аппаратуры систем терморегулирования, связи, управления бортовым комплексом, телевизионной и телеметрической систем, проложены кабели бортовой сети и трубопроводы системы терморегулирования.

В отсеке имеются пульты управления шлюзованием, контроля и управления служебными системами СО, связи, снятия и подачи силового питания, выключатели освещения, электророзетки.

Два блока сопряжения БСС обеспечивают шлюзование двух членов экипажа в скафандрах “Орлан-М”.

Служебные системы модуля:

система терморегулирования;

система связи;

система управления бортовым комплексом;

пульты контроля и управления служебными системами СО;

телевизионная и телеметрическая системы.

Целевые системы модуля:

пульты управления шлюзованием.

два блока сопряжения, обеспечивающих шлюзование двух членов экипажа.

два люка для выхода в открытый космос диаметром 1000 мм.

активный и пассивный стыковочный узлы.

Соединительный модуль «Гармония»

Модуль «Гармония» (Harmony) доставлен на МКС на борту шаттл «Дискавери» (STS-120) и 26 октября 2007 года был временно установлен на левый стыковочный узел модуля «Юнити» МКС.

14 ноября 2007 года модуль «Гармония» перемещен экипажем МКС-16 на постоянное место — на передний стыковочный узел модуля «Дестини». Предварительно на передний стыковочный узел модуля «Гармония» был перенесен стыковочный модуль кораблей шаттл.

Модуль «Гармония» является соединительным элементом для двух исследовательских лабораторий: европейской — «Колумбус» и японской – «Кибо».

Он обеспечивает электропитание присоединённых к нему модулей и обмен данными. Для обеспечения возможности увеличения численности постоянно действующего экипажа МКС в модуле установлена дополнительная система обеспечения жизнедеятельности.

Кроме того модуль оборудован тремя дополнительными спальными местами для космонавтов.

Модуль представляет собой алюминиевый цилиндр длиной 7,3 метра и внешним диаметром 4,4 метра. Герметичный объём модуля составляет 70 м?, вес модуля — 14 300 кг.

Модуль Node 2 был доставлен в Космический центр им. Кеннеди 1 июня 2003 года. Название «Гармония» модуль получил 15 марта 2007 года.

11 февраля 2008 года к правому стыковочному узлу «Гармонии» экспедицией шаттла Атлантис STS-122 была присоединена европейская научная лаборатория «Коламбус». Весной 2008 года к ней была пристыкована японская научная лаборатория «Кибо». Верхний (зенитный) стыковочный узел, предназначавшийся ранее для отменённого японского модуля центрифуг (CAM), временно будет использоваться для стыковки с первой частью лаборатории «Кибо» — экспериментальным грузовым отсеком ELM , который 11 марта 2008 года доставила на борт экспедиция STS-123 шаттла «Индевор».

Лабораторный модуль «Колумбус»

«Коламбус» (англ. Columbus — Колумб) — модуль Международной космической станции созданный по заказу Европейского космического агентства консорциумом европейских аэрокосмических фирм. «Коламбус» это первый серьёзный вклад Европы в строительство МКС, представляет собой научную лабораторию, дающую европейским учёным возможность проводить исследования в условиях микрогравитации.

Модуль был запущен 7 февраля 2008 года, на борту шаттла «Атлантис» в ходе полёта STS-122. Пристыкован к модулю «Гармония» 11 февраля в 21:44 UTC.

Модуль «Колумбус» построен по заказу Европейского космического агентства консорциумом европейских аэрокосмических фирм. Стоимость его строительства превысила $1,9 млрд.

Он представляет из себя научную лабораторию, предназначенную для проведения физических, материаловедческих, медико-биологических и иных экспериментов в условиях отсутствия гравитации. Планируемая длительность функционирования «Колумбус» 10 лет.

Корпус модуля цилиндрической формы диаметром 4477 мм и длиной 6871 мм имеет массу 12 112 кг.

Внутри модуля имеется 10 унифицированных мест (ячеек) для установки контейнеров с научной аппаратурой и оборудованием.

На внешней поверхности модуля имеется четыре места для крепления научной аппаратуры предназначенной для проведения исследований и экспериментов в условиях открытого космоса. (изучение солнечно-земных связей, анализ воздействия на оборудование и материалы длительного пребывания в космосе, эксперименты по выживанию бактерий в экстремальных условиях и т.д.).

На момент доставки на МКС в модуле были уже установлены 5 контейнеров с научной аппаратурой для проведения научных экспериментов в области биологии, физиологии и материаловедения массой 2,5 тонны.

Орбита это, прежде всего, трасса полета МКС вокруг Земли. Чтобы МКС могла летать по строго заданной орбите, а не улетела в далекий космос или упала обратно на Землю пришлось учитывать ряд таких факторов как ее скорость, массу станции, возможности ракет носителей, кораблей доставки, возможности космодромов и конечно же экономические факторы.

Орбита МКС - это низкая околоземная орбита, которая находится в космическом пространстве над Землей, где атмосфера присутствует в крайне разряженном состоянии и плотность частиц мала до такой степени, чтобы не оказывать существенное сопротивление полету. Высота орбиты МКС это основное требование полета для станции, чтобы избавиться от воздействия влияния атмосферы Земли, особенно ее плотных слоев. Это район термосферы на высоте примерно 330-430 км

При расчете орбиты для МКС учитывали ряд факторов.

Первым и основным фактором является воздействие радиации на человека, которая выше 500 км значительно повышена и это может сказаться на здоровье космонавтов, так как их установленная допустимая доза на полгода составляет 0,5 зиверта и не должна превышать один зиверт в сумме за все полеты.

Вторым весомым аргументом при расчете орбиты являются корабли доставки экипажей и грузов для МКС. Например «Союзы» и «Прогрессы» были сертифицированы для полетов на высоту 460 км. Американские космические корабли доставки «Шатлы» не могли летать даже до 390 км. и поэтому раньше при их использовании орбита МКС тоже не выходила за эти пределы 330-350 км. После прекращения полетов Шатлов высоту орбиты стали поднимать, чтобы свести до минимума атмосферное влияние.

Учтены также и экономические параметры. Чем выше орбита, тем дальше лететь, тем больше топлива и значит меньше необходимого груза смогут доставить корабли на станцию, значит и летать придется чаще.

Рассматривают также необходимую высоту с точки зрения поставленных научных задач и экспериментов. Для решения заданных научных задач и проводимых исследований на сегодняшний день высоты до 420 км пока достаточно.

Немаловажное место занимает и проблема космического мусора, который попадая на орбиту МКС, несет самую серьезную опасность.

Как уже говорилось, космическая станция должна летать так чтобы и не упасть и не вылететь со своей орбиты, то есть двигаться с первой космической скоростью, тщательно рассчитанной.

Немаловажным фактором является и расчет наклона орбиты и точка запуска. Идеальным экономическим фактором является запуск с экватора по часовой стрелке, так как здесь дополнительным показателем скорости присутствует скорость вращения Земли. Следующим сравнительно экономически дешевым показателем является запуск с наклоном равным широте, так как потребуется меньше топлива для маневров при запуске, учитывается и политический вопрос. Например, несмотря на то, что космодром Байконур расположен на широте 46 градусов, орбита МКС находится под углом 51,66. Ступени ракет при запуске на орбиту в 46 градусов могли бы упасть на территорию Китая или Монголии что обычно приводит к затратным конфликтам. При выборе космодрома для запуска МКС на орбиту международное сообщество решило использовать космодром Байконур, по причине наиболее подходящей стартовой площадки и траектория полета при таком запуске охватывает большую часть континентов.

Важным параметром космической орбиты является и масса летящего по ней объекта. Но масса МКС часто меняется из-за обновления ее новыми модулями и посещения ее кораблями доставки и поэтому ее спроектировали очень мобильной и с возможностью варьирования как по высоте, так и по направлениям с вариантами поворотов и маневрирования.

Высоту станции меняют по несколько раз в год, в основном для создания баллистических условий для стыковки посещаемых ее кораблей. Кроме изменения массы станции, происходит изменение скорости станции из-за трения с остатками атмосферы. Вследствие этого центрам управления полетом приходится корректировать орбиту МКС до необходимой скорости и высоты. Корректировка происходит при помощи включения двигателе кораблей доставки и реже включением двигателей основного базового служебного модуля «Звезда», на которых имеются ускорители. В нужный момент, при дополнительном включении двигателей скорость полета станции наращивается до расчетной. Изменение высоты орбиты рассчитывается в Центрах управления полетом и проводится в автоматическом режиме без участия космонавтов.

Но особенно необходима маневренность МКС при возможной встрече космическим мусором. На космических скоростях даже маленький его кусочек может оказаться смертельно опасным как для самой станции, так и для ее экипажа. Опуская данные о щитах защиты от мелкого мусора на станции, коротко расскажем о проведении маневров МКС для уклонения от столкновения с мусором и изменению орбиты. Для этого вдоль трассы полета МКС создана зона-коридор с размерами на 2 км выше и плюс 2км ниже нее, а также на 25 км в длину и25 км в ширину и ведется постоянное наблюдение, чтобы в эту зону не попадал космический мусор. Это так называемая защитная зона для МКС. Чистота этой зоны рассчитывается заранее. У Стратегического командования вооруженных сил США USSTRATCOM на авиабазе Ванденберг имеется каталог космического мусора. Специалисты постоянно сравнивают перемещение движения мусора с движение по орбите МКС и следят, чтобы их пути не дай бог не пересеклись. Точнее они рассчитывают вероятность столкновения какого-то куска мусора в зоне полета МКС. Если столкновение возможно хотя бы с вероятностью 1/100000 или 1/10 000, то заранее за 28,5 часов об этом сообщается НАСА (Хьюстон Космический Центр имени Линдона Джонсона) в управление полетом МКС руководству по операциям с траекторией МКС Trajectory Operation Officer (сокращено ТОРО). Здесь в TORO за мониторами следят за месторасположением станции во времени, за космическими кораблями, идущими к ней на стыковку и за то, чтобы станция находилась в безопасности. Получив сообщение о возможном столкновении и координаты, ТОРО передает его Российскому центру управления полетами имени Королева, где баллистики готовят план возможного варианта маневров по исключению столкновения. Это план с новой трассой полета с координатами и точными последовательными действиями маневра по уклоненью от возможного столкновения с космическим мусором. Составленная новая орбита повторно проверяется на предмет не возникнут ли на новом пути опять какие то столкновения и при положительном ответе запускается в работу. Перевод на новую орбиту проводится с Центров управления полетами с Земли в компьютерном режиме автоматически без участия космонавтов и астронавтов.

Для этого у станции в центре масс модуля «Звезда» установлено 4 американских гиродина (СМG) Control Moment Gyroscope, размерами около метра и весом около300кг каждый. Это вращающиеся инерционные устройства, позволяющие станции правильно ориентироваться с высокой точностью. Работают они согласованно с российскими двигателями ориентации. В дополнение к этому российские и американские корабли доставки укомплектованы ускорителями которые при необходимости можно также использовать для перемещения и поворотов станции.

На случай если космический обломок будет обнаружен меньше чем за 28,5 часов и времени для расчетов и согласования новой орбиты на остается, то МКС дается возможность ухода от столкновения по заранее составленному стандартному автоматическому маневру выхода на новую орбиту называемого PDAM (Predetermined Debris Avoidance Maneuver). Если даже этот маневр будет опасен, то есть может вывести на новую опасную орбиту, то экипаж садится в заранее, всегда готовый и пристыкованный к станции космический корабль «Союз» и в полнейшей готовности к эвакуации ждет столкновения. В случае необходимости экипаж мгновенно эвакуируется. За всю историю полетов МКС было 3 таких случая, но они все слава богу закончились хорошо, без необходимости космонавтам эвакуироваться или как говорится не попали в один случай из 10000. От принципа «береженого бог бережет», здесь как никогда отступать нельзя.

Как мы уже знаем МКС представляет собой самый дорогостоящий (более 150 млрдов долларов) космический проект нашей цивилизации и является научным стартом к дальним космическим полетам, на МКС постоянно живут и работаю люди. Безопасность станции и находящиеся на ней люди стоят гораздо выше затраченных денег. В этом плане на первом месте стоит правильно рассчитанная орбита МКС, постоянное наблюдение за ее чистотой и умение МКС быстро и точно уклоняться и маневрировать в случаях необходимости.