Учебная книга по химии. Сера

Альмурзинова Завриш Бисембаевна , учитель биологии и химии МБОУ «Совхозная основная общеобразовательная школа Адамовского района Оренбургской области.

Предмет - химия, класс – 9.

УМК: «Неорганическая химия», авторы: Г.Е. Рудзитис, Ф.Г. Фельдман, Москва, «Просвещение», 2014 год.

Уровень обучения – базовый.

Тема : «Сероводород. Сульфиды. Сернистый газ. Сернистая кислота и её соли». Количество часов по теме – 1.

Урок № 4 в системе уроков по теме « Кислород и сера ».

Цель : На основании знаний о строении сероводорода, оксидов серы рассмотреть их свойства и получение, познакомить учащихся со способами распознавания сульфидов и сульфитов.

Задачи:

1. Образовательная – изучить особенности строения и свойства соединений серы (II ) и( IV ); ознакомиться с качественными реакциями на сульфид и сульфит - ионы.

2. Развивающая – развивать у учащихся умения проводить эксперимент, наблюдать за результатами, анализировать и делать выводы.

3. Воспитательная развитию интереса к изучаемому привить навыкы отношения к природе.

Планируемые результаты : уметь описывать физические и химические свойства сероводорода, сероводородной кислоты и её солей; знать способы получения сернистого газа и сернистой кислоты, объяснить свойства соединений серы (II ) и(IV ) на основе представлений об окислительно-восстановительных процессах; иметь представления о влиянии сернистого газа на появление кислотных дождей.

Оборудование : На демонстрационном столе: сера, сульфид натрия, сульфид железа, раствор лакмуса, раствор серной кислоты, раствор нитрата свинца, хлор в цилиндре, закрытом пробкой, прибор для получения сероводорода и испытания его свойств, оксид серы(VI ), газометр с кислородом, стакан вместимостью 500 мл., ложечка для сжигания веществ.

Ход урока :

    Организационный момент .

    Проводим беседу по повторению свойств серы:

1) чем объясняется наличие нескольких аллотропных видоизменений серы?

2) что происходит с молекулами: А) при охлаждении парообразной серы. Б) при длительном хранении пластической серы, в) при выпадении кристаллов из раствора серы в органических растворителях, например в толуоле?

3) на чем основан флотационный способ очистки серы от примесей, например от речного песка?

Вызываем двух учащихся: 1) изобразите схемы молекул различных аллотропных видоизменений серы и расскажите об их физических свойствах. 2) составьте уравнения реакций, характеризующих свойства кислорода, и рассмотрите их с точки зрения окисления -восстановления.

Остальные учащиеся решают задачу, какова масса сульфида цинка, образующегося при реакции соединения цинка с серой, взятой количеством вещества 2,5 моль?

    Совместно с учащимися формулируем задачу урока : познакомиться со свойствами соединений серы со степенью окисления -2 и +4.

    Новая тема : Учащиеся называют известные им соединения, в которых сера проявляет эти степени окисления. На доске и в тетрадях пишут химические, электронные и структурные формулы сероводорода, оксида серы (IV ), сернистой кислоты.

Как можно получить сероводород? Учащиеся записывают уравнение реакции соединения серы с водородом и объясняют её с точки зрения окисления-восстановления. Затем рассматривают другой способ получения сероводорода: реакцию обмена кислот с сульфидами металлов. Сравниваем этот способ со способами получения галогеноводородов. Отмечаем, что степень окисления серы в реакциях обмена не меняется.

Какими свойствами обладает сероводород? В беседе выясняем физические свойства, отмечаем физиологическое действие. Химические свойства выясняем на опыте горения сероводорода в воздухе при различных условиях. Что может образоваться в качестве продуктов реакции? Рассматриваем реакции с точки зрения окисления-восстановления:

2 Н 2 S + 3O 2 = 2H 2 O + 2SO 2

2H 2 S + O 2 =2H 2 O + 2S

Обращаем внимание учащихся на то, что при полном сгорании происходит более полное окисление (S -2 - 6 e - = S +4 ), чем во втором случае (S -2 - 2 e - = S 0 ).

Обсуждаем, как пройдет процесс, если в качестве окислителя будет взят хлор. Демонстрируем опыт смешивания газов в двух цилиндрах, верхний из которых заранее наполнен хлором, нижний - сероводородом. Хлор обесцвечивается, образуется хлороводород. Сера оседает на стенках цилиндра. После этого рассматриваем сущность реакции разложения сероводорода и подводим учащихся к выводу о кислотном характере сероводорода, подтверждая опытом с лакмусом. Затем проводим качественную реакцию на сульфид ион и составляем уравнение реакции:

Na 2 S +Pb(NO 3 ) 2 =2NaNO 3 +PbS ↓

Совместно с учащимися формулируем вывод: сероводород является только восстановителем в окислительно- восстановительных реакциях, имеет кислотный характер, раствор его в воде кислота.

S 0 →S -2 ; S -2 →S 0 ; S 0 →S +4 ; S -2 →S +4 ; S 0 →H 2 S -2 → S +4 О 2.

Подводим учащихся к выводу о существовании генетической связи между соединениями серы и начинаем разговор о соединениях S +4 . Демонстрируем опыты: 1) получение оксида серы(IV ), 2) обесцвечивание раствора фуксина, 3) растворение оксида серы(IV ) в воде, 4)обнаружение кислоты. Составляем уравнения реакций выполненных опытов и разбираем сущность реакций:

2S О 2 + О 2 =2 S О 3 ; S О 2 +2H 2 S=3S+2H 2 О .

Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы(IV ) и воду, поэтому существует только в водных растворах. Эта кислота средней силы. Она образует два ряда солей: средние - сульфиты(S О 3 -2 ), кислые – гидросульфиты(HS О 3 -1 ).

Демонстрируем опыт: качественное определение сульфитов, взаимодействие сульфитов с сильной кислотой, при этом выделяется газ S О 2 резким запахом:

К 2 S О 3 + Н 2 S О 4 → К 2 S О 4 + Н 2 О + S О 2

    Закрепление. Работа по двум вариантам составить схемы применения 1 вариант сероводорода, второй вариант оксида серы(IV )

    Рефлексия . Подводим итоги работы:

О каких соединениях мы сегодня говорили?

Какие свойства проявляют соединения серы(II ) и ( IV ).

Назовите области применения этих соединений

VII . Домашнее задание: §11,12, упр.3-5 (с.34)

, , 21 , , ,
, 25-26 , 27-28 , , 30, , , , , , , , , , , , /2003;
, , , , , , , , , , , , , /2004

§ 8.1. Окислительно-восстановительные реакции

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ
(продолжение)

2. Озон – окислитель.

Озон – важнейшее для природы и человека вещество.

Озон создает вокруг Земли на высоте от 10 до 50 км озоносферу с максимумом содержания озона на высоте 20–25 км. Находясь в верхних слоях атмосферы, озон не пропускает к поверхности Земли большую часть ультрафиолетовых лучей Солнца, губительно действующих на человека, животный и растительный мир. В последние годы обнаружены участки озоносферы с сильно пониженным содержанием озона, так называемые озоновые дыры. Неизвестно, образовывались ли озоновые дыры раньше. Также непонятны и причины их возникновения. Предполагают, что хлорсодержащие фреоны холодильников и парфюмерных баллончиков под действием ультрафиолетового излучения Солнца выделяют атомы хлора, которые реагируют с озоном и тем самым уменьшают его концентрацию в верхних слоях атмосферы. Опасность озоновых дыр в атмосфере крайне беспокоит ученых.
В нижних слоях атмосферы озон образуется в результате ряда последовательных реакций между кислородом воздуха и оксидами азота, выбрасываемыми плохо отрегулированными двигателями автомобилей и создающимися разрядами высоковольтных линий электропередач. Озон очень вреден для дыхания – он разрушает ткани бронхов и легких. Озон чрезвычайно ядовит (сильнее угарного газа). Предельно допустимая концентрация в воздухе – 10 –5 %.
Таким образом, озон в верхних и в нижних слоях атмосферы оказывает противоположное по своим результатам воздействие на человека и животный мир.
Озон наряду с хлором используют для обработки воды, чтобы разрушить органические примеси и уничтожить бактерии. Однако как хлорирование, так и озонирование воды имеет свои преимущества и недостатки. При хлорировании воды уничтожаются практически полностью бактерии, но образуются вредные для здоровья органические вещества канцерогенного характера (способствуют развитию раковых опухолей) – диоксины и подобные им соединения. При озонировании воды такие вещества не образуются, но озон убивает не все бактерии, и оставшиеся живыми бактерии через некоторое время обильно размножаются, поглощая остатки убитых бактерий, и вода становится даже более загрязненной бактериальной флорой. Поэтому озонирование питьевой воды лучше применять при ее быстром использовании. Очень эффективно озонирование воды в бассейнах, когда вода непрерывно циркулирует через озонатор. Озон применяют также и для очистки воздуха. Он относится к числу экологически чистых окислителей, не оставляющих вредных продуктов своего распада.
Озон окисляет почти все металлы, кроме золота и металлов платиновой группы.

Химические способы получения озона неэффективны или слишком опасны. Поэтому советуем вам получить озон в смеси с воздухом в озонаторе (действие слабого электрического разряда на кислород), имеющемся в школьной физической лаборатории.

Озон чаще всего получают действием на газообразный кислород тихого электрического разряда (без свечения и искр), который происходит между стенками внутреннего и внешнего сосудов озонатора. Простейший озонатор нетрудно изготовить из стеклянных трубок с пробками. Как это сделать, вы поймете из рис. 8.4. Внутренний электрод – металлический стержень (длинный гвоздь), наружный электрод – проволочная спираль. Воздух можно продувать воздушным насосом для аквариума или резиновой грушей от пульверизатора. На рис. 8.4 внутренний электрод находится в стеклянной трубке (как вы думаете, почему? ), но можно собрать озонатор и без нее. Резиновые пробки быстро разъедаются озоном.

Высокое напряжение удобно получить от индукционной катушки системы зажигания автомобиля, непрерывно размыкая соединение с источником низкого напряжения (аккумулятор или выпрямитель тока на 12 В).
Выход озона – несколько процентов.

Качественно обнаружить озон можно при помощи крахмального раствора йодида калия. Этим раствором можно пропитать полоску фильтровальной бумаги или раствор добавить в озонированную воду, а воздух с озоном пропускать через раствор в пробирке. Кислород в реакцию с йодид-ионом не вступает.
Уравнение реакции:

2I – + О 3 + Н 2 О = I 2 + O 2 + 2ОН – .

Напишите уравнения реакций приема и отдачи электронов.
Поднесите к озонатору полоску фильтровальной бумаги, смоченную этим раствором. (Зачем раствор йодида калия должен содержать крахмал?) Определению озона этим способом мешает пероксид водорода (почему?) .
Рассчитайте ЭДС реакции, используя электродные потенциалы:

3. Восстановительные свойства сероводорода и сульфид-иона.

Сероводород – бесцветный газ с запахом тухлых яиц (в состав некоторых белков входит сера).
Для проведения опытов с сероводородом можно пользоваться газообразным сероводородом, пропуская его через раствор с изучаемым веществом, или приливать к исследуемым растворам заранее приготовленную сероводородную воду (это удобнее). Многие реакции можно проводить с раствором сульфида натрия (реакции на сульфид-ион S 2–).
Работать с сероводородом только под тягой! Смеси сероводорода с воздухом сгорают со взрывом.

Сероводород обычно получают в аппарате Киппа, действуя 25%-й серной (разбавленной 1:4) или 20%-й соляной (разбавленной 1:1) кислотой на сульфид железа в виде кусочков размером 1–2 см. Уравнение реакции:

FeS (кр.) + 2Н + = Fe 2+ + H 2 S (г.).

Небольшие количества сероводорода можно получить, поместив кристаллический сульфид натрия в колбу с пробкой, через которую пропущены капельная воронка с краном и отводная трубка. Медленно приливая из воронки 5–10%-ю соляную кислоту (почему не серную?) , колбу постоянно встряхивают покачиванием, чтобы избежать местного скопления непрореагировавшей кислоты. Если этого не делать, неожиданное смешение компонентов может привести к бурной реакции, выталкиванию пробки и разрушению колбы.
Равномерный ток сероводорода получается при нагревании с серой богатых водородом органических соединений, например парафина (1 часть парафина на 1 часть серы, 300 °С).
Для получения сероводородной воды через дистиллированную воду (или прокипяченную) пропускают сероводород. В одном объеме воды растворяется около трех объемов газообразного сероводорода. При стоянии на воздухе сероводородная вода постепенно мутнеет (почему?) .
Сероводород – сильный восстановитель: галогены восстанавливаются им до галогеноводородов, серная кислота – до диоксида серы и серы.
Сероводород ядовит. Предельно допустимая концентрация в воздухе 0,01 мг/л. Даже при незначительных концентрациях сероводород раздражает глаза и дыхательные пути, вызывает головную боль. Концентрации выше 0,5 мг/л опасны для жизни. При более высоких концентрациях поражается нервная система. При вдохе сероводорода возможна остановка сердца и дыхания. Иногда сероводород скапливается в пещерах и канализационных колодцах, и попавший туда человек мгновенно теряет сознание и погибает.
В то же время сероводородные ванны оказывают лечебное действие на организм человека.

3а. Реакция сероводорода с пероксидом водорода.

Изучите действие раствора пероксида водорода на сероводородную воду или раствор сульфида натрия.
По результатам опытов составьте уравнения реакций. Рассчитайте ЭДС реакции и сделайте вывод о возможности ее прохождения.

3б. Реакция сероводорода с серной кислотой.

В пробирку с 2–3 мл сероводородной воды (или раствора сульфида натрия) прилейте по каплям концентрированную серную кислоту (осторожно!) до появления мути. Что это за вещество? Какие другие продукты могут получиться в этой реакции?
Напишите уравнения реакций. Рассчитайте ЭДС реакции, используя электродные потенциалы:

4. Диоксид серы и сульфит-ион.

Диоксид серы, сернистый газ – важнейший загрязнитель атмосферы, выделяемый автомобильными двигателями при использовании плохо очищенного бензина и топками, в которых сгорают серосодержащие угли, торф или мазут. Ежегодно в атмосферу из-за сжигания угля и нефти выбрасываются миллионы тонн диоксида серы.
В природе диоксид серы встречается в вулканических газах. Диоксид серы окисляется кислородом воздуха в триоксид серы, который, поглощая воду (пары), превращается в серную кислоту. Выпадающие кислотные дожди разрушают цементные части построек, памятники архитектуры, высеченные из камня скульптуры. Кислотные дожди замедляют рост растений и даже приводят к их гибели, убивают живые организмы водоемов. Такие дожди вымывают из пашен малорастворимые в воде фосфорные удобрения, которые, попадая в водоемы, приводят к бурному размножению водорослей и быстрому заболачиванию прудов, рек.
Диоксид серы – бесцветный газ с резким запахом. Получать диоксид серы и работать с ним следует под тягой.

Сернистый газ можно получить, поместив в колбу, закрывающуюся пробкой с отводной трубкой и капельной воронкой, 5–10 г сульфита натрия. Из капельной воронки с 10 мл концентрированной серной кислоты (крайняя осторожность!) приливайте ее по каплям к кристаллам сульфита натрия. Вместо кристаллического сульфита натрия можно воспользоваться его насыщенным раствором.
Диоксид серы можно получить также реакцией между металлической медью и серной кислотой. В круглодонную колбу, снабженную пробкой с газоотводной трубкой и капельной воронкой, положите медные стружки или куски проволоки и прилейте из капельной воронки немного серной кислоты (на 10 г меди берется около 6 мл концентрированной серной кислоты). Для начала реакции слегка нагрейте колбу. После этого кислоту приливайте по каплям. Напишите уравнения приема и отдачи электронов и суммарное уравнение.
Свойства диоксида серы можно изучать, пропуская газ через раствор реагента, или в виде водного раствора (сернистой кислоты). Такие же результаты получаются при использовании подкисленных растворов сульфитов натрия Na 2 SO 3 и калия К 2 SO 3 . В одном объеме воды растворяется до сорока объемов сернистого газа (получается ~6%-й раствор).
Диоксид серы токсичен. При легких отравлениях начинается кашель, насморк, появляются слезы, начинается головокружение. Увеличение дозы приводит к остановке дыхания.

4а. Взаимодействие сернистой кислоты с пероксидом водорода.

Предскажите продукты взаимодействия сернистой кислоты и пероксида водорода. Проверьте свое предположение опытом.
К 2–3 мл сернистой кислоты прилейте столько же 3%-го раствора пероксида водорода. Как доказать образование предполагаемых продуктов реакции?
Тот же опыт повторите с подкисленным и щелочным растворами сульфита натрия.
Напишите уравнения реакций и рассчитайте ЭДС процесса.
Выберите нужные вам электродные потенциалы:

4б. Реакция между сернистым газом и сероводородом.

Эта реакция проходит между газообразными SO 2 и H 2 S и служит для получения серы. Реакция интересна также тем, что два загрязнителя атмосферы взаимно уничтожают друг друга. Проходит ли эта реакция между растворами сероводорода и сернистого газа? Ответьте на этот вопрос опытом.
Выберите электродные потенциалы для определения возможности прохождения реакции в растворе:

Попробуйте провести термодинамический расчет возможности прохождения реакций. Термодинамические характеристики веществ для определения возможности прохождения реакции между газообразными веществами следующие:

При каком состоянии веществ – газообразном или в растворе – реакции более предпочтительны?

Серная кислота – один из основных много тоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета, запаха, при обычной температуре находится в жидком состоянии. В концентрированном виде не корродирует черные металлы. В то же время серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева. Безводная серная кислота (моногидрат) Н2SО4 представляет собой тяжелую маслянистую жидкость, которая смешивается с водой во всех соотношениях с выделением большого количества тепла.

Сырье процесса: серный колчедан, элементная сера, сероводо­род, сульфиды металлов, такие как медный колчедан CuFeS 2 , медный блеск CuS 2 , сульфаты : гипс CaSO 4 2H 2 O, ангидрит CaSO 4 , мирабилит Na 2 SO 4 10H 2 O и т.д.

Получение газо­вой серы из сероводорода, извлекаемого при очистке горючих и технологи­ческих газов, основано на процессе неполного окисления на твердом катализа­торе. При этом протекают реакции:

H 2 S + 1,5O 2 = SO 2 + H 2 O;

2H 2 S + SO 2 = 2H 2 O + 1,5S 2 .

Значительные количества серы могут быть получены из побочных про­дук­тов производства цветных металлов, например меди:

2FeS 2 = 2FeS +S 2 ;

SO 2 + C = S + CO 2 ;

CS 2 + SO 2 = 1,5S 2 + CO 2 ;

2COS + SO 2 = 1,5S 2 + 2CO 2

Получение сернистого газа сжиганием серы, сероводорода и других видов сырья

При сжигании 1 моля серы расходуется 1 моль кис­лорода. При этом получают 1 моль сернистого газа:

S (газ) + О2 (газ) = S02 (газ)-j - 362,4 кДж (86,5 ккал).

Поэтому при горении серы в воздухе, содержащем 21% кислорода, возможно (теоретически) получить 21% сернистого ангидрида. Выход сернистого ангидрида здесь выше, чем при горении колчедана и цинковой об­манки. При сжигании серы в производстве серной кис­лоты получается наиболее выгодное соотношение SO2 и кислорода. Если сжигать серу с небольшим избытком воздуха, можно получить сернистый газ с повышенным содержанием S02. Однако при этом развивается темпе­ ратура до 1300°С, что приводит к разрушению футе­ровки печи; это ограничивает получение из серы газа с высокой концентрацией S02.

Сероводород сгорает с образованием S02 и Н20:

2H2S + 302 = 2S02+2H20-f 1038,7 кДж (247,9 ккал).

Образующиеся при этом пары воды поступают с газо­вой смесью в контактный аппарат, а из него на абсорб­цию.

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным процессом и состоит из нескольких последовательно проводимых стадий.

Принципиальная схема этого производства представлена на рисунке.

1 – получение обжигового газа: 1 – обжиг колчедана, 2 – охлаждение газа в котле-утилизаторе, 3 – общая очистка газа, 4 – специальная очистка газа; 11 – контактирование: 5 – подогрев газа в теплообменнике, 6 – контактирование; 111 – абсорбция: 7 – абсорбция оксида серы (6) и образование серной кислоты.

Сернистый ангидрид S02 – это бесцветный газ, в 2.3 раза тяжелее воздуха, с резким запахом. При растворении в воде образуется слабая и нестойкая сернистая кислота SO2 +Н2О = H2SO3.

2.Уголь. Получение кокса.

Коксование каменных углей

Значительную часть углей подвергают высокотемпературной (пирогене-ти­ческой) химической переработке. Цель такой переработки – производство ценных вторичных продуктов, используемых далее в качестве топлива и про­межуточных продуктов для органического синтеза. По назначению и условиям процессы пирогенетической переработки углей делят на три вида: пиро­лиз, газификация, гидрирование .

Пиролиз или сухая перегонка – это процесс нагрева твердого топлива без доступа воздуха с целью получения газообразных, жидких и твердых продуктов различного назначения. Существует высокотемпературный пиро­лиз (коксование ) и низкотемпературный пиролиз (полукоксование ).

Полукоксование проводят при 500–580 о С с целью получения искус­ственного жидкого и газообразного топлива. Продуктами полукоксования являются сы­рье для оргсинтеза, смола (источник получения моторных топлив), раство­ри­тели, мономеры и полукокс, используемый как местное топливо и добавка в шихту для коксования.

Процессы гидрирования и газификации используются для получения из угля жидких продуктов, применяемых как моторное топливо, и горючих газов.

Коксование каменного угля проводят при температуре 900 – 1200 о С с целью получения кокса, горючих газов и сырья для химической промышленности.

Предприятия, на которых осуществляют коксование углей, называют коксохимическими. Существуют отдельные коксохимические заводы с пол­ным циклом коксохимического производства, размещаемые отдельно от ме-таллургических предприятий, и коксохимические цеха в составе металлу­рги­ческих комбинатов.

Структурная схема коксохимического производства представлена на рисунке.

Каменный уголь

Углеподготовка

Угольная шихта

Кокс

Коксование

ВодородОКГ

ПКГ Кокс на склад

Охлаждение и разделение

СБ КУС

Разгонка

Разгонка

Индивидуальные арены Фракции КУС

Нейтрализация

на переработку

Серная кислота

Сульфат аммония

Рис.. Структурная схема коксохимического производства

На схеме обозначено: ОКГ – обратный коксовый газ; ПКГ – прямой коксовый газ; КУС – каменноугольная смола; СБ – сырой бензол.

По физико-химической природе коксование – это сложный двухфазный эндотермический процесс, в котором протекают термофизические превраще­ния коксуемого сырья и вторичные реакции с участием органических полу­продуктов первой стадии коксования. Коксование угля ведут в коксовых пе­чах периодического действия, в которых теплота передается к коксуемой уголь­ной шихте через стенку реактора.

3. Получение соляной кислоты. Соля́ная кислота́ (хлороводоро́дная, хлористоводоро́дная, хлористый водород) - HCl, раствор хлороводорода в воде; сильная одноосновная кислота. Бесцветная (техническая соляная кислота желтоватая из-за примесей Fe, Cl 2 и др.), «дымящая» на воздухе, едкая жидкость. Максимальная концентрация при 20 °C равна 38% по массе, плотность такого раствора 1,19 г/см³. Молярная масса 36,46 г/моль. Соли соляной кислоты называются хлоридами. Рассмотрим основные направления использования кислоты:

    Металлургия. Соляная кислота техническая применяется для зачистки металлов при лужении и паянии. Также кислота соляная используется при получении марганца, железа и других веществ.

    Гальванопластика. В этом направлении соляная кислота техническая выступает в роли активной среды при травлении и декапировании.

    Пищевая промышленность. Всевозможные регуляторы кислотности, например, E507, имеют в своем составе кислоту. Да и содовую (сельтерскую) воду трудно представить без такого вещества, как кислота соляная .

    Медицина. В данной сфере, конечно же, используется не соляная кислота техническая , а очищенные аналоги, однако, подобное явление все же имеет место. В частности, речь идет о добавлении вещества в желудочный сок в случае недостаточной кислотности.

В колонне адиабатической абсорбции получают соляную кислоту пониженной концентрации, но свободную от органических примесей. Кислоту с повышенной концентрацией HCI производят в колонне изотермической абсорбции при пониженной температуре. Степень извлечения HCI из абгазов при использовании в качестве абсорбентов разбавленных кислот составляет 90-95%. При использовании в качестве абсорбента чистой воды степень извлечения почти полная.

4. Прямой синтез концентрированной азотной кислоты.

Прямой синтез HNО 3 основан на взаимодействии жидких оксидов азота с водой и газообразным кислородом под давлением до 5 МПа по уравнению

2N 2 O 4 + O 2 + 2H 2 O → 4HNO 3

100%-ный диоксид азота при атмосферном давлении и температуре 21,5 °С полностью переходит в жидкое состояние. При окислении аммиака полученный NO окисляется в NO 2 , содержание которого в газовой смеси составляет около 11%. Перевести диоксид азота такой концентрации в жидкое состояние при атмосферном давлении не представляется возможным, поэтому для сжижения оксидов азота применяют повышенное давление.

Концентрирование азотной кислоты с помощью водоотнимающих веществ. Получить концентрированную азотную кислоту перегонкой разбавленной кислоты невозможно. При кипении и перегонке разбавленной азотной кислоты ее можно упарить лишь до содержания 68,4 % HNO 3 (азеотропная смесь), после чего состав перегоняемой смеси не изменится.

В промышленности перегонку разбавленных водных растворов азотной кислоты осуществляют в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота, концентрированные растворы нитратов и др.). Применение водоотнимающих веществ дает возможность понизить содержание водяных паров над кипящей смесью и увеличить содержание паров азотной кислоты, при конденсации которых получается 98%-ная HNО 3 .

Технологическая схема концентрирования азотной кислоты с применением серной кислоты:

Рисунок– Схема концентрирования разбавленной азотной кислоты в присутствии серной кислоты:

1, 4 – напорные баки для азотной и серной кислоты; 2 – контрольные фонари; 3 – испаритель разбавленной азотной кислоты; 5 – коробка для регулировании подачи кислоты,;6 – концентрационная колонна, 7 – холодильник конденсатор; 8 – холодильник кислоты, циркулирующей в башне; 9 –вентилятор: 10 – поглотительная башня; 11 – сборник; 12 – насос; 13 – холодильник концентрированной азотной кислоты, 14 – холодильник отработанной серной кислоты

Разбавленная азотная кислота из напорного бака 1 подается в колонну 6 через два расходомера 2, включенные параллельно. Один поток кислоты проходит в испаритель 3 и подается в виде смеси жидкости и пара на 10-ю тарелку колонны 6, другой поток без подогрева поступает на вышележащую тарелку.

Серная кислота из напорного бака 4 через регулятор 5 подается в верхнюю часть колонны 6 выше ввода холодного потока азотной кислоты. В нижнюю часть колонны вводится острый пар, при нагревании которым из тройной смеси начинает испаряться азотная кислота.

Пары азотной кислоты при температуре 70–85 °С, поднимаясь вверх, выходят через штуцер в крышке колонны и поступают в холодильник-конденсатор 7. В этих парах имеются примеси оксидов азота и воды.

В холодильнике-конденсаторе пары азотной кислоты при температуре около 30 °С конденсируются с образованием 98–99%-ной HNО 3 , при этом оксиды азота частично поглощаются этой кислотой. Концентрированная азотная кислота, содержащая оксиды азота, направляется на две верхние тарелки и проходит их последовательно, причем оксиды выдуваются из раствора парами азотной кислоты, поступающими в конденсатор 7. Несконденсировавшиеся пары азотной кислоты и выделившиеся оксиды азота направляют на абсорбцию в башню 10, орошаемую водой. Полученная 50%-ная кислота поступает в сборник 11 и вновь направляется на концентрирование. Концентрированную азотную кислоту после охлаждения направляют на склад готовой продукции.

Отработанная серная кислота, содержащая 65–85% H 2 SO 4 , поступает на концентрирование. При концентрировании азотной кислоты с применением 92–93%-ной серной кислоты расход последней значительно сокращается при подаче на концентрирование 59–60%-ной HNO 3 вместо 48–50%-ной. Поэтому в некоторых случаях выгодно проводить предварительное концентрирование 50%-ной HNO 3 до 60%-ной путем простого упаривания.

Большим недостатком концентрирования азотной кислоты с помощью серной кислоты является высокое содержание паров и тумана H 2 SO 4 в выхлопных газах после электрофильтров (0,3–0,8 г/м 3 газа). Поэтому серную кислоту заменяют, например, нитратом магния или цинка.

5. Получение керамики.

Кера́мика - обширная по составу группа диэлектрических материалов, объединенных общностью технологического цикла. В настоящее время под словом керамика понимают не только глиносодержащие, но и другие неорганические материалы, обладающие сходными свойствами, при изготовлении изделий из которых требуется высокотемпературный обжиг. Исходные материалы. Для изготовления керамических изделий используют различные природные и искусственные материалы.

Искусственные и природные материалы - оксиды, соли различаются по количественному и качественному содержанию примесей посторонних оксидов и в соответствии с этим условно обозначают буквами: Ч (чистый), ЧДА (чистый для анализа), ХЧ (химически чистый), и др. Также различают исходное сырье по физико-химическим показателям (размерам и форме частиц, удельной поверхности, активности и др.).

Исходным сырьем для производства радио- и пьезокерамики является большое количество различных солей и окислов: каолины, глины, полевые шпаты, кремний содержащие материалы, тальки - природные пластичные материалы; искусственные непластичные материалы, производимые промышленностью - технический глинозем и корунд, диоксиды циркония и титана, оксид бериллия, карбонаты бария и стронция.

Глины и каолины состоят преимущественно из гидроалюмосиликатов (Al 2 O 3 *2SiO 2 *H 2 O) и примесей солей железа, щелочных и щелочноземельных оксидов и солей. Из полевых шпатов наиболее приемлемы для производства керамики калиево-натриевые полевые шпаты (K 2 O*Al 2 O 3 *6SiO 2 ; Na 2 O*Al 2 O 3 *6SiО 2). Основой кремний содержащих материалов и кварцев является диоксид кремния (SiO 2), в котором могут быть различные добавки (окислы железа, глины, полевые шпаты и др.).Состав тальков разнообразен: от 3MgO*4SiO 2 *H2O до 4MgO*5SiO 2 *H2O, примеси в них Fe 2 O 3 , Al 2 O 3 , CaO, Na 2 О, Cr 2 O и др. Самыми нежелательными примесями во всех природных пластичных материалах являются соли железа.

Названные природные пластичные материалы используют для улучшения пластических свойств пресс-масс для формования изделий и как стеклообразуюшие добавки в радиокерамике. Тальки являются основой таких видов радиокерамики как стеатитовая и форстеритовая.

Технический глинозем и корунд получают при химической переработке природного сырья-минерала боксита и прокаливания его до 1100–1200 0 С. Диоксиды циркония (Zr 2 O 2), титана (TiO 2), олова (SnO 2), оксиды бериллия (B 2 O), стронция (SrO), цинка (ZnO), свинца (PbO), магния (MgO) получают при воздействии на исходное сырье путем комплекса химических и термических взаимодействий.

Получение керамики. По строению керамика представляет собой сложную систему состоящую из трех основных фаз: кристаллической, стекловидной и газовой. Кристаллическая фаза (основная) представляет собой химические соединения или твердые растворы, она определяет характерные свойства керамического материала; стекловидная фаза находится в керамическом материале в виде прослоек между кристаллической составляющей или обособленных микрочастиц и выполняет роль связующего вещества; газовая фаза представляет собой газы, содержащиеся в порах керамики. Поры ухудшают свойства керамики, особенно при повышенной влажности.

Свойства керамики зависят от состава смеси (химического и процентного соотношения веществ), режима обработки.

Керамика может быть изготовлена путем однократного или двукратного обжига. Это имеет свои преимущества и недостатки.

В производстве керамики распространены следующие технологические способы изготовления пъезокерамики основанные на:

1) механическом смешивании исходных веществ в виде порошков окислов и солей металлов, соответствующих химическому составу изготовляемого материала;

2) термическом разложении солей металлов;

3) совместном осаждении карбонатов солей соответствующих металлов или их гидратов.

Исходными веществами для изготовления радио - пъезокерамики и ферритов являются окислы и соли металлов. Основные этапы технологического процесса заключаются в следующем.

Набор исходных веществ определяется заданными магнитными и электрическими свойствами изделий, геометрической формой и размерами.

Анализ исходных окислов и солей выполняется с целью определения их физико-химических характеристик, вида и количества примесей, величины и формы частичек, активности, т.е. возможности вступать в реакцию с другими компонентами смеси, и др.

Расчет массы и соотношения исходных компонентов проводят, основываясь на химической формуле материала. И затем в соответствии с расчетом производят взвешивание исходных компонентов.

Помол или растворение и смешивание выполняют для получения однородной по химическому составу и размеру частиц смеси. Эти операции выполняют или с жидкостью (водой) или без воды, т.е. выполняют мокрый (шликерный) или сухой помол. Мокрый помол завершается сушкой.

Операция брикетирование (гранулирование) нужна для получения более компактной формы полученной смеси (шихты) и более полного протекания реакции при выполнении следующей операции. Здесь получают брикеты, таблетки или гранулы.

Предварительный обжиг шихты выполняется для частичного или полного протекания диффузионных процессов между окислами для превращения их в керамический материал (синтез керамики) и уменьшения усадки при окончательном обжиге.

Вторичный помол и смешивание брикетов, таблеток или гранул выполняется с целью получения изделий с равномерными свойствами, полного протекания диффузионных процессов и обеспечивая возможности формирования изделия. Операция выполняется в воде или без воды, а поэтому после ее завершения, как и в первом случае, полученную смесь сушат.

Для улучшения формования порошков в них вводят пластификаторы (связки, смазки), улучшающие адгезию отдельных частиц. Введение пластификаторов дает возможность получать различные массы: для прессования – пресс - порошки, для литья - шликеры, а для формирования из пластичных масс - пластичные массы.

Основными способами формирования являются прессование, формование из пластичных масс, шликерное литье.

Отформованные изделия подвергают высокотемпературному спеканию, при котором получают соответствующий данному материалу (радио-, пьезокерамике, ферриту) комплекс определенных магнитных, электрических, механических свойств и физико-механических характеристик.

6. Получение гидроксида натрия. Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.

Сероводород присутствует в искусственных газах . Он может входить также в состав и некоторых природных газов. Сероводород (Н 2 S) – это бесцветный газ, обладающий сильным специфическим запахом. Сероводород тяжелее воздуха. Его плотность составляет r 0 = 1.539 кг /м 3 . Сероводород является сильным нервным газом , а также раздражающе действует на дыхательные пути и глаза. Предельно допустимая концентрация Н 2 S составляет 0.01 мг /м 3 . При горении сероводорода образуется сернистый газ SO 2 , т.е. протекает следующая реакция:

2H 2 S + 3O 2 = 2SO 2 + 2H 2 O

Высшая теплота сгорания диоксида серы составляет Q в = 25.727 МДж /м 3 , низшая – 23.715 МДж /м 3 .

Диоксид серы имеет очень большую область воспламенения. Так, нижний предел составляет 4.3% об., верхний 45.5% об. Температура воспламенения его в воздухе составляет 290…487 0 С .

Работа в помещениях с высоким содержанием сернистого газа может привести к бронхиту, одышке и частичной потере сознания . Предельно допустимая концентрация диоксида серы составляет 0.02 мг /м 3 .

Пострадавшим от отравления сероводородом должна быть оказана первая помощь. Необходимо обеспечить доступ свежего воздуха и, в случае необходимости, провести искусственное дыхание . В случае поражения глаз необходимо перевезти пострадавшего в темную комнату и закапать глаза смесью новокаина с адреналином.

Пострадавшим от отравления диоксидом серы необходимо проводить промывание раствором соды носа и глаз. При наличии удушливого кашля применяют кодеин и щелочную ингаляцию .

Сероуглерод

Сероуглерод обычно присутствует в пиролизных газах, относящихся к группе искусственных газов. Он является бесцветной жидкостью со специфическим запахом. Плотность его при 20 0 С оставляет 2.263 кг /м 3 . Пар сероуглерода более чем в 2.5 раза тяжелее воздуха. При горении сероуглерода образуются сернистый и углекислый газы:

CS 2 + 3O 2 = CO 2 + 2SO 2 (5.6)

Пределы воспламеняемости сероуглерода в воздухе составляют: нижний - 1.25% об., верхний – 50% об.

Вдыхание высоких концентраций паров сероуглерода действует на организм человека наркотически. Длительное вдыхание небольших концентраций сероуглерода приводит к заболеваниям нервной системы. Предельно допустимая концентрация сероуглерода в рабочей зоне промышленных помещений составляет 0.01 мг /л .

Первая доврачебная помощь при отравлении сероуглеродом-проводить промывание раствором соды носа и глаз

Аммиак

Содержится он, как правило, в пиролизных газах, получаемых в процессе высокотем-ой перегонки каменного угля. С одной стороны аммиак – это ценный продукт, а с другой он обладает достаточно высокой токсичностью. По своим свойствам аммиак – это бесцветный газ с очень острым запахом. Всего лишь 10% раствора аммиака в воде составляет нашатырный спирт. Кратковременное вдыхание высоких концентраций приводит к сильному слезоточению и боли в глазах, а также вызывает приступы удушья, кашля, головокружения и рвоту. Кроме того, при значительных концентрациях может произойти также нарушение кровообращения и наступить смерть от сердечной недостаточности. Предельно доп. конц. аммиака в воздухе пром помещений составляет 0.02 мг /л . Осложнения последствий отравлений даже при незначительных концентрациях аммиака, может наступить при совместных действиях с сероводородом. Это может привести к потере обоняния и вызвать хронические катары дыхательных путей. При острых отравлениях аммиаком необходимо производить пострадавшему вдыхание паров уксусной кислоты и 10%-го раствора метанола в хлороформе.

Цианистый водород

Цианистый водород входит в состав искусственных газов, главным образом, пиролизных газов. Он образуется в результате взаимодействия аммиака с раскаленным коксом. Величина образующегося цианистого водорода зависит от ряда факторов: температуры, влажности каменного угля, а также содержания в нем азота. По своим физико-химическим свойствам цианистый водород представляет собой жидкость, имеющую специфический запах (запах горького миндаля).

- (сернистый водород) H2S, бесцветный газ с запахом тухлых яиц; tпл?85,54 .С, tкип?60,35 .С; при 0 .С сжижается под давлением 1 МПа. Восстановитель. Побочный продукт при очистке нефтепродуктов, коксовании угля и др.; образуется при разложении… … Большой Энциклопедический словарь

СЕРОВОДОРОД - (H2S), бесцветный, ядовитый газ с запахом тухлых яиц. Образуется в процессах гниения, содержится в сырой нефти. Получают действием серной кислоты на сульфиды металлов. Используется в традиционном КАЧЕСТВЕННОМ АНАЛИЗЕ. Свойства: температура… … Научно-технический энциклопедический словарь

СЕРОВОДОРОД - СЕРОВОДОРОД, сероводорода, мн. нет, муж. (хим.). Газ, образующийся при гниении белковых веществ, издающий запах тухлых яиц. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

СЕРОВОДОРОД - СЕРОВОДОРОД, а, муж. Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ. | прил. сероводородный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

сероводород - сущ., кол во синонимов: 1 газ (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СЕРОВОДОРОД - бесцветный ядовитый газ H2S с неприятным специфическим запахом. Обладает слабокислотными свойствами. 1 л С. при t 0 °C и давлении 760 мм составляет 1,539 г. Встречается в нефтях, в природных водах, в газах биохимического происхождения, как… … Геологическая энциклопедия

СЕРОВОДОРОД - СЕРОВОДОРОД, H2S (молекулярный вес 34,07), бесцветный газ с характерным запахом тухлых яиц. Литр газа при нормальных условиях (0°, 760 мм) весит 1,5392 г. Темп, кипения 62°, плавления 83°; С. входит в состав газообразных выделений… … Большая медицинская энциклопедия

сероводород - — Тематики биотехнологии EN hydrogen sulfide … Справочник технического переводчика

сероводород - СЕРОВОДОРОД, а, м Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ и представляющий собой соединение серы с водородом. Сероводород содержится в некоторых минеральных водах и лечебных грязях и используется… … Толковый словарь русских существительных

Книги

  • Как бросить курить! (DVD) , Пелинский Игорь , "Нет ничего легче, чем бросить курить, - я уже тридцать раз бросал" (Марк Твен). Почему люди начинают курить? Чтобы расслабиться, отвлечься, собраться с мыслями, избавиться от стресса или… Категория: Психология. Бизнес Серия: Путь к здоровью и совершенству Издатель: Сова-Фильм , Купить за 275 руб
  • Вестиментиферы – бескишечные беспозвоночные морских глубин , В. В. Малахов , Монография посвящена новой группе гигантских (до 2,5 м) глубоководных животных, обитающих в районах глубоководной гидротермальной активности и холодных углеводородных просачиваний. Наиболее… Категория: Медицина Издатель: Товарищество научных изданий КМК , Купить за 176 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)