В каких клетках происходит митоз и мейоз таблица. Митоз и мейоз в помощь к сдаче егэ

Клеточный цикл – это период жизни клетки от одного деления до другого. Состоит из интерфазы и периодов деления. Продолжительность клеточного цикла у разных организмов разная (у бактерий – 20-30 мин, у клеток эукариот – 10-80 ч).

Интерфаза

Интерфаза (от лат. inter – между, phases – появление) – это период между делениями клетки или от деления до ее гибели. Период от деления клетки до ее гибели характерен для клеток многоклеточного организма, которые после деления утратили способность к нему (эритроциты, нервные клетки и т. п.). Интерфаза занимает приблизительно 90 % времени клеточного цикла.

Интерфаза включает:

1) пресинтетический период (G 1) – начинаются интенсивные процессы биосинтеза, клетка растет, увеличивается в размерах. Именно в этом периоде до смерти остаются клетки многоклеточных организмов, которые утратили способность к делению;

2) синтетический (S) – происходит удвоение ДНК, хромосом (клетка становится тетраплоидной), удваиваются центриоли, если они есть;

3) постсинтетический (G 2) – в основном прекращаются процессы синтеза в клетке, происходит подготовка клетки к делению.

Деление клетки бывает прямым (амитоз) и непрямым (митоз, мейоз).

Амитоз

Амитоз – прямое деление клеток, при котором не образуется аппарат деления. Ядро делится вследствие кольцевой перетяжки. Не происходит равномерного распределения генетической информации. В природе амитозом делятся макронуклеусы (большие ядра) инфузорий, клетки плаценты у млекопитающих. Амитозом могут делиться клетки раковых опухолей.

Непрямое деление связано с образованием аппарата деления. В аппарат деления входят компоненты, которые обеспечивают равномерное распределение хромосом между клетками (веретено деления, центромеры, если есть – центриоли). Деление клетки условно можно разделить на деление ядра (кариокинез ) и деление цитоплазмы (цитокинез ). Последний начинается к концу деления ядра. Наиболее распространены в природе митоз и мейоз. Иногда встречается эндомитоз – непрямое деление, которое происходит в ядре без разрушения его оболочки.

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.

Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Мейоз

Мейоз (от греч. мейозис – уменьшение) – это непрямое редукционное деление клетки, при котором из материнской образуются четыре дочерние, располагающие неидентичной генетической информацией.

Различают два деления: мейоз I и мейоз II. Интерфаза I сходна с интерфазой перед митозом. В постсинтетическом периоде интерфазы процессы синтеза белка не прекращаются и продолжаются в профазе первого деления.

Мейоз I:

профаза I – хромосомы спирализируются, ядрышко и ядерная оболочка исчезают, образуется веретено деления, гомологичные хромосомы сближаются и слипаются вдоль сестринских хроматид (как молния в замке) – происходит конъюгация , при этом образуются тетрады , или биваленты , образуется перекрест хромосом и обмен участками – кроссинговер , потом гомологичные хромосомы отталкиваются одна от другой, но остаются сцепленными в участках, где состоялся кроссинговер; процессы синтеза завершаются;

метафаза I – хромосомы располагаются вдоль экватора, гомологичные –двухроматидные хромосомы располагаются одна напротив другой по обе стороны экватора;

анафаза I – нити веретена деления одновременно сокращаются, растягивают по одной гомологичной двухроматидной хромосоме к полюсам;

телофаза I (если есть) – хромосомы деспирализируются, образуются ядрышко и ядерная оболочка, происходит распределение цитоплазмы (клетки, которые образовались, гаплоидны).

Интерфаза II (если есть): не происходит удвоения ДНК.

Мейоз II:

профаза II – уплотняются хромосомы, исчезают ядрышко и ядерная оболочка, образуется веретено деления;

метафаза II – хромосомы располагаются вдоль экватора;

анафаза II – хромосомы при одновременном сокращении нитей веретена деления расходятся к полюсам;

телофаза II – деспирализируются хромосомы, образуются ядрышко и ядерная оболочка, делится цитоплазма.

Мейоз происходит перед образованием половых клеток. Позволяет при слиянии половых клеток сохранять постоянство числа хромосом вида (кариотип). Обеспечивает комбинативную изменчивость.

Так дотошно расписанные в любом учебнике. Неужели здесь нужно добавлять что-то ещё?

Но не спешите с выводами, а положитесь, пожалуйста, на мой опыт репетитора по биологии. То, о чем мы сегодня поговорим, может оказаться многим полезным. А говорить мы будем о тех недоразумениях, которые возникают на экзаменах при ответе на эти вопросы.

И вообще о возможных ошибках молодости, когда самую главную жизненную информацию порой пропускаем «мимо ушей»…

Опять, возможно, начну с долей критики в адрес учебников. Тема деления, настолько важна, что ей уделяется действительно много места. Казалось бы, что еще может быть лучше: для объяснения процессов приводится груда цветных иллюстраций и всевозможных схем.

Митоз — четыре этапа деления. Мейоз — аж восемь этапов деления с указанием не только самих названий процессов, но и с подробнейшим описанием того, что с какой клеточной «бякой» на каждом этапе происходит.

Согласен, что для сдачи экзамена все эти «дотошности» приходится выучить, а вернее вызубрить. То есть — это все запоминается на короткую память. Но из-за груды частных мелочей ускользает самое главное, не помнится потом сама суть и значение явлений.

А что должно действительно остаться в голове надолго, чтобы в итоге не делать самых простых ошибок ни на экзаменах, ни, что еще важнее, в своей жизни.

1. Хотя бы не путать сами названия процессов друг с другом

А то получается как с понятиями — сами названия процессов помнятся, но в 50% случаев с точностью до наоборот.

После «растаскивания» к полюсам материнской клетки в анафазе митоза одно хроматидных хромосом, во вновь образующихся двух дочерних клетках содержание ДНК становится идентичным исходной материнской клетке — 2n2с .

Поскольку в результате митоза из одной исходной клетки (говорят «материнской клетки») образуются две полноценные клетки, с совершенно идентичной исходной клетке генетической информацией, то митоз можно назвать термином «размножение» — это бесполое размножение.

А какова суть мейоза?

Само слово «мейоз» можно произнести мягко, нараспев (м-е-е-е-й-оз) — это тип редукционного деления клетки, приводящий к образованию из одной клетки четырех, но с половинным, гаплоидным набором хромосом (1n1с ).

И вот сейчас, запомните мою крамольную мысль. Мейоз в отличие от митоза — это не размножение. Это способ образования гаплоидных клеток (спор — у растений и половых клеток гамет — у животных). Гаметы лишь после процесса оплодотворения, который в данном случае и является половым размножением, послужат образованию нового организма.

Еще раз обращаю ваше внимание, что у животных организмов мейозом делятся клетки специализированных тканей гонад, из которых образуются гаметы или половые клетки. А у растений мейозом образуются споры, у уже потом путем митозов образуются гаметы.

Мейозу, как и митозу, предшествует удвоение генетического материала клетки, но мейоз протекает в два этапа мейоз I и мейоз II.

Сама редукция числа хромосом, то есть уменьшение их количества в два раза происходит уже после первого этапа мейоза, поскольку а профазу мейоза I происходила коньюгация гомологичных хромосом, но хромосомы в двух образовавшихся гаплоидных клетках остаются еще двухроматидными (1n2c ).

Между мейозом I и мейозом II проходит очень мало времени, дополнительного удвоения ДНК не происходит и снова каждая клетка образует две гаплоидные клетки (1n ), но они уже «нормальные» — однохроматидные ().

2. Что еще очень важно помнить любому, особенно молодым людям — потенциальным родителям

Именно при мейозе при созревании половых клеток могут происходить в результате коньюгации гомологичных хромосом всякие «перетасовки» генетического материала между гомологичными хромосомами в профазу I мейоза — кроссинговер.

И в этот момент образования и яйцеклеток, и сперматозоидов особенно важно, что бы не было воздействия на организм человека никаких неблагоприятных факторов (нервных потрясений, больших доз лекарственных препаратов, алкоголя, никотина и других наркотических средств), способных привести к ошибкам кроссинговера при мейозе (а, значит, и к появлению генетически неполноценного потомства).

3. На что еще следует обратить внимание

Даже если хорошо помнится, что митозом размножаются все соматические клетки организма, а мейоз — способ образования половых клеток, допускается следующая ошибка.

Да, мейоз — способ образования половых клеток, но… Но только у организмов!!! Снова хочу подчеркнуть, что у всех высших (мхов, папоротников, голосеменных и покрытосеменных растений) мейотическому делению подвергаются споры! В дальнейшем из гаплоидных спор путем митозов растений — гаметы.

Авторам школьных учебников следовало бы именно на это обратить внимание, поскольку составители тестовых заданий любят (и они правы) включать вопросы по основополагающим процессам функционирования живых систем. А способы размножения клеток живых организмов и способы полового размножения организмов разных таксонов как раз и относятся к таким процессам.

_______________________________________________________________________________

Сейчас пишу и думаю, как все-таки жаль, что этот блог в интернете пока невидимка (надеюсь, что «пока»). Ведь информация этого поста полезна всем, особенно молодому поколению, чтобы из-за незнания потом всю жизнь не расплачиваться здоровьем своих детей.

Цель: учащиеся углубляют знания о формах размножения организмов; формируются новые понятия о митозе и мейозе и их биологическом значении.

Оборудование:

  1. Учебно-наглядные пособия: табл., плакаты
  2. технические средства обучения: интерактивная доска, мультимедийные презентации, обучающие компьютерные программы.

План урока:

  1. Организационный момент
  2. Повторение.
    1. Что такое размножение?
    2. Какие типы размножения вам известны? Дайте им определения?
    3. Перечислите примеры бесполого размножения? Приведите примеры.
    4. Биологическое значение бесполого размножения?
    5. Какое размножение называется половым?
    6. Какие половые клетки вам известны?
    7. Чем гаметы отличаются от соматических клеток?
    8. Что такое оплодотворение?
    9. В чем заключается преимущества полового размножения по сравнению с бесполым размножением?
  3. Изучение нового материала

Ход урока

В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.

Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.

Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.

В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.

Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?

Интерфаза включает в себя три периода.

Пресинтетический период G 1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид, с – количество ДНК).

В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).

В третьем периоде интерфазы – постсинтетическом G 2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.

Деление клетки.

В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.

Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.

Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.

Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Обычно самая продолжительная фаза клеточного деления.

Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).

Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.

Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).

Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).

Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.

Биологическое значение митоза:

  1. Точное распределение хромосом и их генетической информации между дочерними клетками.
  2. Обеспечивает постоянство кариотипа и генетическую преемственность во всех клеточных проявлениях; т.к. иначе было бы не возможным постоянство строения и правильность функционирования органов и тканей многоклеточного организма.
  3. Обеспечивает важнейшие процессы жизнедеятельности – эмбриональное развитие, рост, восстановление тканей и органов, а также бесполое размножение организмов.

Мейоз

Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).

Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).

В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).

Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).

Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).

Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).

В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).

Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).

В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.

Биологическое значение мейоза:

1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.

2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2 n , где n – число хромосом гаплоидного набора: 2 23 =8 388 608. Число возможных комбинаций у одной родительской пары 2 23 х 2 23

3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом

определяют закономерности наследственной передачи признака от родителей потомству.

Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.

При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»

Типы деления Митоз (непрямое деление) Мейоз (редукционное деление)
Число делений одно деление два деление
Происходящие процессы Репликация и транскрипция отсутствуют В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер
К полюсам клетки расходятся хроматиды В первом делении к полюсам клетки расходятся гомологичные хромосомы
Число дочерних клеток 2 4
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные)
Клетки, где происходит деление Соматические клетки Соматические клетки половых органов животных; спорообразующие клетки растений
Значение Обеспечивает бесполое размножение и рост живых организмов Служит для образования половых клеток

Закрепление изученного материала (по табл., тестовая работа).

Литература:

  1. Ю.И. Полянский. Учебник для 10-11 классов средней школы. –М.: «Просвещение», 1992.
  2. И.Н. Пономарева, О.А. Корнилова, Т.Е. Лощилина. Учебник «Биология» 11 класс, базовый уровень, –М.: «Вентана-Граф», 2010.
  3. С.Г. Мамонтов Биология для поступающих в ВУЗЫ. –М.: 2002.
  4. Н. Грин, У.Стаут, Д. Тейлор. Биология в 3 т. –М.: «Мир», 1993.
  5. Н.П. Дубинина. Общая биология. Пособие для учитетеля. –М.: 1990.
  6. Н.Н. Приходченко, Т.П. Шкурат «Основы генетики человека». Уч.пос. – Ростов н/Д: «Феникс», 1997.

Мейоз - это деление в зоне созревания половых клеток , сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза», продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация(соединение гомологичных хромосом) и обмен генетической информацией. В анафазе Iцентроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологмейоза Митоз и его фазы митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называютзиготой.

Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления. В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Мейоз и митоз

Таблица - Сравнение митоза и мейоза

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) -кроссинговер . Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при nхромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при nхромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления.

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих , земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза », во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз ).

Интерфаза состоит из нескольких периодов:

G 1 -фазы (от англ. gap - промежуток), или фазы начального роста , во время которой идет синтез мРНК , белков , других клеточных компонентов;

S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра , также происходит удвоение центриолей (если они, конечно, есть).

G 2 -фазы, во время которой идет подготовка к митозу .

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатахсветовой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков , какциклин-зависимые киназы и циклины . Клетки , находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста . Разные факторы роста, такие как тромбоцитарный , эпидермальный, фактор роста нервов, связываясь со своимирецепторами , запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ . Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами . Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса.Киназы не активны без циклинов . На разных стадиях клеточного цикла синтезируются разные циклины . Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза , когда запускается весь каскад реакций фосфорилирования , катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК, и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53 , pRb , Myc иRas . Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21 , являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Деление клеток

Все клетки появляются путём деления родительских клеток. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

Интерфаза состоит из трех этапов. В течение 4–8 часов после рождения клетка увеличивает свою массу. Некоторые клетки (например, нервные клетки мозга) навсегда остаются в этой стадии, у других же в течение 6–9 часов удваивается хромосомная ДНК. Когда масса клетки увеличивается в два раза, начинается митоз .

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза . Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает собственный набор хромосом и возвращается в стадию интерфазы. Весь процесс занимает около часа.

Процесс митоза может варьировать в зависимости от типа клетки. В растительной клетке отсутствуют центриоли, хотя веретено деления образуется. В грибных клетках митоз происходит внутри ядра, ядерная мембрана не распадается.

Наличие хромосом не является необходимым условием деления клетки. С другой стороны, один или несколько митозов могут останавливаться на стадии телофазы, в результате чего возникают многоядерные клетки (например, у некоторых водорослей).

Размножение при помощи митоза называют бесполым или вегетативным, а также клонированием . При митозе генетический материал родительских и дочерних клеток идентичен.

Мейоз , в отличие от митоза, является важным элементом полового размножения . При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. По сути, мейоз является разновидностью митоза. Он включает два последовательных деления клетки, однако хромосомы удваиваются только в первом из этих делений. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).

В результате мейотического деления у животных образуются четыре гаметы . Если мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки служат лишь для размещения избыточного генетического материала.

Мужские и женские гаметы сливаются, образуя зиготу . Хромосомные наборы при этом объединяются (этот процесс называется сингамией ), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.

В последнее время проводились эксперименты по искусственному слиянию клеток одного или разных видов. Наружные поверхности клеток склеивались вместе, а мембрана между ними разрушалась. Таким образом удалось получить гибридные клетки мыши и цыплёнка, человека и мыши. Однако при последующих делениях клетки теряли большинство хромосом одного из видов.

В других экспериментах клетка разделялась на компоненты, например, ядро, цитоплазму и мембрану. После этого компоненты различных клеток снова соединяли вместе, и в результате получалась живая клетка, состоящая из компонентов клеток разных видов. В принципе, опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию новых форм жизни.

Сравнительная характеристика митоза и мейоза

Митоз , или непрямое деление, наиболее широко распространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.)

Мейоз -- это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое.

Сравнение митоза и мейоза

Вопросы для сравнения

1) Какие изменения происходят в ядре до начала деления (в интерфазе)?

Удвоение ДНК, синтез белков и других органических веществ клетки, удвоение органоидов клетки, синтез АТФ

Удвоение ДНК (только перед мейозом I), синтез белков, синтез АТФ. Перед вторым делением интерфаза короткая, т.к. удвоения ДНК не происходит

2) Каковы фазы деления?

Профаза, метафаза, анафаза, телофаза

Два этапа деления:

  • 1 деление профаза I, метафаза I, анафаза I, телофаза I;
  • 2 деление профаза II, метафаза II, анафаза II, телофаза II

3) Характерна ли конъюгация гомологических хромосом?

Нет, не характерна

Да, характерна конъюгация

4) Какое число хромосом получает каждая дочерняя клетка?

n, гаплоидный (одинарный)

2n, диплоидный (двойной)

5) Где происходит данный процесс?

В зоне роста, в зоне деления соматических клеток (например, на кончике корня, в узлах и на верхушке побега рост стебля в длину, в камбиальном слое - рост корня и стебля в ширину, на концах трубчатых костей - рост костей в длину, в надкостнице - рост костей в ширину)

В зоне созревания

6) Какое значение имеет для существования вида?

Размножение одноклеточных организмов бесполым способом (путем деления), рост организмов, регенерация, передача наследственных признаков от материнского организма дочернему организму

Образуются новые половые клетки, предшествует половому размножению; эволюционное значение, характерна изменчивость в основном благодаря конъюгации

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра-зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру-чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) --кроссинговер. Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при n хромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Происходит то же, что и в митозе, но при nхромосом.

Центромеры, скрепляющие се-стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро-мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при n хромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро-мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Сходства:

  • Ш Имеют одинаковые фазы деления
  • Ш Перед митозом и мейозом происходит самоудвоение хромосом, спирализация и удвоение молекул ДНК

митоз мейоз деление клетка