Закон кулона для вакуума и среды. Единицы измерения заряда

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Валентина:

Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

На основании многочисленных опытов Кулон установил следующий закон:

Сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Она направлена вдоль прямой, соединяющей заряды, и является силой притяжения, если заряды разноименные, и силой отталкивания, если заряды одноименные.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

\[ F = k \cdot \dfrac{\left|q_1 \right| \cdot \left|q_2 \right|}{r^2} \]

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц.

\[ k=\frac{1}{4\pi \varepsilon _0} \]

Полная формула закона Кулона:

\[ F = \dfrac{\left|q_1 \right|\left|q_2 \right|}{4 \pi \varepsilon_0 \varepsilon r^2} \]

\(F \) - Сила Кулона

\(q_1 q_2 \) - Электрический заряд тела

\(r \) - Расстояние между зарядами

\(\varepsilon_0 = 8,85*10^{-12} \) - Электрическая постоянная

\(\varepsilon \) - Диэлектрическая проницаемость среды

\(k = 9*10^9 \) - Коэффициент пропорциональности в законе Кулона

Силы взаимодействия подчиняются третьему закону Ньютона: \(\vec{F}_{12}=\vec{F}_{21} \) . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

    Существует два рода электрических зарядов, условно названных положительными и отрицательными.

    Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Отметим, чтоб выполнялся закон Кулона необходимо 3 условия:

  • Точечность зарядов - то есть расстояние между заряженными телами много больше их размеров.
  • Неподвижность зарядов . Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд.
  • Взаимодействие зарядов в вакууме .

В Международной системе СИ за единицу заряда принят кулон (Кл) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Пример 1

Задача

Заряженный шарик приводят в соприкосновение с точно таким же незаряженным шариком. Находясь на расстоянии \(r = 15 \) см, шарики отталкиваются с силой \(F = 1 \) мН. Каков был первоначальный заряд заряженного шарика?

Решение

При соприкосновении заряд разделится ровно пополам (шарики одинаковые).По данной силе взаимодействия можем определить заряды шариков после соприкосновения (не забудем, что все величины надо представить в единицах СИ – \(F = 10^{-3} \) Н, \(r = 0.15 \) м):

\(F = \dfrac{k\cdot q^2}{r^2} , q^2 = \dfrac{F\cdot r^2}{k} \)

\(k=\dfrac{1}{4\cdot \pi \cdot \varepsilon _0} = 9\cdot 10^9 \)

\(q=\sqrt{\dfrac{f\cdot r^2}{k} } = \sqrt{\dfrac{10^{-3}\cdot (0.15)^2 }{9\cdot 10^9} } = 5\cdot 10^8 \)

Тогда до соприкосновения заряд заряженного шарика был вдвое больше: \(q_1=2\cdot 5\cdot 10^{-8}=10^{-7} \)

Ответ

\(q_1=10^{-7}=10\cdot 10^{-6} \) Кл, или 10 мкКл.

Пример 2

Задача

Два одинаковых маленьких шарика массой по 0,1г каждый подвешены на непроводящих нитях длиной \(\displaystyle{\ell = 1\,{\text{м}}} \) к одной точке. После того как шарикам были сообщены одинаковые заряды \(\displaystyle{q} \) , они разошлись на расстояние \(\displaystyle{r=9\,{\text{см}}} \) . Диэлектрическая проницаемость воздуха \(\displaystyle{\varepsilon=1} \) . Определить заряды шариков.

Данные

\(\displaystyle{m=0,1\,{\text{г}}=10^{-4}\,{\text{кг}}} \)

\(\displaystyle{\ell=1\,{\text{м}}} \)

\(\displaystyle{r=9\,{\text{см}}=9\cdot 10^{-2}\,{\text{м}}} \)

\(\displaystyle{\varepsilon = 1} \)

\(\displaystyle{q} - ? \)

Решение

Поскольку шарики одинаковы, то на каждый шарик действуют одинаковые силы: сила тяжести \(\displaystyle{m \vec g} \), сила натяжения нити \(\displaystyle{\vec T} \)и сила кулоновского взаимодействия (отталкивания) \(\displaystyle{\vec F} \). На рисунке показаны силы, действующие на один из шариков. Поскольку шарик находится в равновесии, сумма всех сил, действующих на него, равна 0. Кроме того, сумма проекций сил на оси \(\displaystyle{OX} \) и \(\displaystyle{OY} \)равна 0:

\(\begin{equation} {{\mbox{на ось }} {OX} : \atop { \mbox{ на ось }} {OY} : }\quad \left\{\begin{array}{ll} F-T\sin{\alpha} & =0 \\ T\cos{\alpha}-mg & =0 \end{array}\right. \quad{\text{или}}\quad \left\{\begin{array}{ll} T\sin{\alpha} & =F \\ T\cos{\alpha} & = mg \end{array}\right. \end{equation} \)

Решим совместно эти уравнения. Разделив первое равенство почленно на второе, получим:

\(\begin{equation} {\mbox{tg}\,}= {F\over mg}\,. \end{equation} \)

Так как угол \(\displaystyle{\alpha} \) мал, то

\(\begin{equation} {\mbox{tg}\,}\approx\sin{\alpha}={r\over 2\ell}\,. \end{equation} \)

Тогда выражение примет вид:

\(\begin{equation} {r\over 2\ell}={F\over mg}\,. \end{equation} \)

Сила \(\displaystyle{F} \)по закону Кулона равна: \(\displaystyle{F=k{q^2\over\varepsilon r^2}} \). Подставим значение \(\displaystyle{F} \)в выражение (52):

\(\begin{equation} {r\over 2\ell}={kq^2\over\varepsilon r^2 mg}\, \end{equation} \)

откуда выразим в общем виде искомый заряд:

\(\begin{equation} q=r\sqrt{r\varepsilon mg\over 2k\ell}\,. \end{equation} \)

После подстановки численных значений будем иметь:

\(\begin{equation} q= 9\cdot 10^{-2}\sqrt{9\cdot 10^{-2}\cdot 1 \cdot 10^{-4}\cdot 9,8\over 2\cdot 9\cdot 10^9\cdot 1}\, {{\text{Кл}}}=6.36\cdot 10^{-9}\, {{\text{Кл}}}\,. \end{equation} \)

Предлагается самостоятельно проверить размерность для расчетной формулы.

Ответ: \(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Ответ

\(\displaystyle{q=6,36\cdot 10^{-9}\,{\text{Кл}}\,.} \)

Пример 3

Задача

Какую работу надо совершить, чтобы перенести точечный заряд \(\displaystyle{q=6\,{\text{нКл}}} \) из бесконечности в точку, находящуюся на расстоянии \(\displaystyle{\ell = 10\,{\text{см}}} \) от поверхности металлического шарика, потенциал которого \(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \), а радиус \(\displaystyle{R = 2\,{\text{см}}} \)? Шарик находится в воздухе (считать \(\displaystyle{\varepsilon=1} \)).

Данные

\(\displaystyle{q=6\,{\text{нКл}}=6\cdot 10^{-9}\,{\text{Кл}}} \)\(\displaystyle{\ell=10\,{\text{см}}} \)\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)\(\displaystyle{R=2\,{\text{см}}} \) \(\displaystyle{\varepsilon = 1} \) \(\displaystyle{A} \) - ?

Решение

Работа, которую необходимо совершить, чтобы перенести заряд из точки с потенциалом \(\displaystyle{\varphi_1} \) в точку с потенциалом \(\displaystyle{\varphi_2} \) , равна изменению потенциальной энергии точечного заряда, взятому с обратным знаком:

\(\begin{equation} A=-\Delta W_n\,. \end{equation} \)

Известно, что \(\displaystyle{A=-q(\varphi_2-\varphi_1) } \) или

\(\begin{equation} A=q(\varphi_1-\varphi_2) \,. \end{equation} \)

Поскольку точечный заряд первоначально находится на бесконечности, то потенциал в этой точке поля равен 0: \(\displaystyle{\varphi_1=0} \) .

Определим потенциал в конечной точке, то есть \(\displaystyle{\varphi_2} \) .

Пусть \(\displaystyle{Q_{\text{ш}}} \) – заряд шарика. По условию задачи потенциал шарика известен (\(\displaystyle{\varphi_{\text{ш}}=200\,{\text{В}}} \)) , тогда:

\(\begin{equation} \varphi_{\text{ш}}={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon R}\, \end{equation} \)

\(\begin{equation} {\text{откуда}}\quad Q_{\text{ш}}=\varphi_{\text{ш}}\cdot 4\pi\varepsilon_o\varepsilon R\,. \end{equation} \)

Значение потенциала поля в конечной точке с учетом:

\(\begin{equation} \varphi_2={Q_{\text{ш}}\over 4\pi\varepsilon_o\varepsilon(R+\ell) }= {\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

Подставим в выражение значение \(\displaystyle{\varphi_1} \) и \(\displaystyle{\varphi_2} \) , после чего получим искомую работу:

\(\begin{equation} A=-q{\varphi_{\text{ш}}R\over (R+\ell) }\,. \end{equation} \)

В результате расчетов получим: \(\displaystyle{A=-2\cdot 10^{-7}\,{\text{Дж}}} \) .

Тогда модуль силы взаимодействия между соседними зарядами равен:

\(F = \dfrac{k\cdot q^2}{l^{2}_{1}} =\Delta l\cdot k_{pr} \)

Причем удлинение шнура равно: \(\Delta l = l \).

Откуда величина заряда равна:

\(q=\sqrt{\frac{4\cdot l^3\cdot k_{pr}}{k} } \)

Ответ

\(q=2\cdot l\cdot \sqrt{\frac{l\cdot k_{pr}}{k} } \)

Энциклопедичный YouTube

    1 / 5

    ✪ Урок 213. Электрические заряды и их взаимодействие. Закон Кулона

    ✪ 8 кл - 106. Закон Кулона

    ✪ Закон Кулона

    ✪ физика ЗАКОН КУЛОНА решение задач

    ✪ Урок 215. Задачи на закон Кулона - 1

    Субтитры

Формулировки

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца , действующая на другой движущийся заряд;
  3. Расположение зарядов в вакууме .

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

F → 12 = k ⋅ q 1 ⋅ q 2 r 12 2 ⋅ r → 12 r 12 , {\displaystyle {\vec {F}}_{12}=k\cdot {\frac {q_{1}\cdot q_{2}}{r_{12}^{2}}}\cdot {\frac {{\vec {r}}_{12}}{r_{12}}},}

где F → 12 {\displaystyle {\vec {F}}_{12}} - сила, с которой заряд 1 действует на заряд 2; q 1 , q 2 {\displaystyle q_{1},q_{2}} - величина зарядов; r → 12 {\displaystyle {\vec {r}}_{12}} - радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами - r 12 {\displaystyle r_{12}} ); k {\displaystyle k} - коэффициент пропорциональности.

Коэффициент k

k = 1 ε . {\displaystyle k={\frac {1}{\varepsilon }}.} k = 1 4 π ε ε 0 . {\displaystyle k={\frac {1}{4\pi \varepsilon \varepsilon _{0}}}.}

Закон Кулона в квантовой механике

Закон Кулона с точки зрения квантовой электродинамики

История

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил Г. В. Рихман в 1752-1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала трагическая гибель Рихмана.

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем , однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Д. К. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы . Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона, принцип суперпозиции и уравнения Максвелла

Степень точности закона Кулона

Закон Кулона - экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует, какова бы ни была форма полости или проводника .

Такие опыты впервые провел Кавендиш и повторил Максвелл в усовершенствованном виде, получив для максимального отличия показателя в степени от двух величину 1 21600 {\displaystyle {\frac {1}{21600}}}

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до (3 , 1 ± 2 , 7) × 10 − 16 {\displaystyle (3,1\pm 2,7)\times 10^{-16}} .

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10 −8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10 −9 .

Коэффициент k {\displaystyle k} в законе Кулона остается постоянным с точностью до 15⋅10 −6 .

Поправки к закону Кулона в квантовой электродинамике

На небольших расстояниях (порядка комптоновской длины волны электрона , λ e = ℏ m e c {\displaystyle \lambda _{e}={\tfrac {\hbar }{m_{e}c}}} ≈3.86⋅10 −13 м , где m e {\displaystyle m_{e}} - масса электрона , ℏ {\displaystyle \hbar } - постоянная Планка , c {\displaystyle c} - скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон -позитронных (а также мюон -антимюонных и таон -антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка e − 2 r / λ e {\displaystyle e^{-2r/\lambda _{e}}} в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

Φ (r) = Q r ⋅ (1 + α 4 π e − 2 r / λ e (r / λ e) 3 / 2) , {\displaystyle \Phi (r)={\frac {Q}{r}}\cdot \left(1+{\frac {\alpha }{4{\sqrt {\pi }}}}{\frac {e^{-2r/\lambda _{e}}}{(r/\lambda _{e})^{3/2}}}\right),}

где λ e {\displaystyle \lambda _{e}} - комптоновская длина волны электрона, α = e 2 ℏ c {\displaystyle \alpha ={\tfrac {e^{2}}{\hbar c}}} - постоянная тонкой структуры и r ≫ λ e {\displaystyle r\gg \lambda _{e}} .

На расстояниях порядка λ W = ℏ m w c {\displaystyle \lambda _{W}={\tfrac {\hbar }{m_{w}c}}} ~ 10 −18 м, где m w {\displaystyle m_{w}} - масса W-бозона , в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка m e c 2 e λ e {\displaystyle {\tfrac {m_{e}c^{2}}{e\lambda _{e}}}} ~10 18 В/м или m e c e λ e {\displaystyle {\tfrac {m_{e}c}{e\lambda _{e}}}} ~10 9 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд , а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро- но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально .

Закон Кулона и поляризация вакуума

Закон Кулона и сверхтяжелые ядра

Значение закона Кулона в истории науки

Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме .

См. также

Ссылки

  • Закон Кулона (видеурок, программа 10 класса)

Примечания

  1. Сивухин Д. В. Общий курс физики. - М. : Физматлит ; Изд-во МФТИ , 2004. - Т. III. Электричество. - С. 17. - 656 с. - ISBN 5-9221-0227-3 .
  2. Ландау Л. Д. , Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т . Т. 2 Теория поля. - 8-е изд., стереот. - М.: ФИЗМАТЛИТ, 2001. - 536 с. -

Основной закон взаимодействия электрических зарядов был найден Шарлем Кулоном в 1785 г. экспериментально. Кулон установил, что сила взаимодействия между двумя небольшими заряженными металлическими шариками обратно пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где -коэффициент пропорциональности
.

Силы, действующие на заряды , являются центральными , то есть они направлены вдоль прямой, соединяющей заряды.


Закон Кулона можно записать в векторной форме :
,

где -со стороны заряда,

- радиус-вектор, соединяющий заряд с зарядом;

- модуль радиус-вектора.

Сила, действующая на заряд со стороныравна
,
.

Закон Кулона в такой форме

    справедлив только для взаимодействия точечных электрических зарядов , то есть таких заряженных тел, линейными размерами которых можно пренебречь по сравнению с расстоянием между ними.

    выражает силу взаимодействия между неподвижными электрическими зарядами, то есть это электростатический закон.

Формулировка закона Кулона :

Сила электростатического взаимодействия между двумя точечными электрическими зарядами прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними .

Коэффициент пропорциональности в законе Кулоназависит

    от свойств среды

    выбора единиц измерения величин, входящих в формулу.

Поэтому можно представить отношением
,

где -коэффициент, зависящий только от выбора системы единиц измерения ;

- безразмерная величина, характеризующая электрические свойства среды, называется относительной диэлектрической проницаемостью среды . Она не зависит от выбора системы единиц измерения и равна единице в вакууме.

Тогда закон Кулона примет вид:
,

для вакуума
,

тогда
-относительная диэлектрическая проницаемость среды показывает, во сколько раз в данной среде сила взаимодействия между двумя точечными электрическими зарядами и, находящимися друг от друга на расстоянии, меньше, чем в вакууме.

В системе СИ коэффициент
, и

закон Кулона имеет вид :
.

Это рационализированная запись закона К улона.

- электрическая постоянная,
.

В системе СГСЭ
,
.

В векторной форме закон Кулона принимает вид

где -вектор силы, действующей на заряд со стороны заряда ,


- радиус-вектор, соединяющий заряд с зарядом

r –модуль радиус-вектора .

Всякое заряженное тело состоит из множества точечных электрических зарядов, поэтому электростатическая сила, с которой одно заряженное тело действует на другое, равна векторной сумме сил, приложенных ко всем точечным зарядам второго тела со стороны каждого точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство, в котором находится электрический заряд, обладает определенными физическими свойствами .

    На всякий другой заряд, внесенный в это пространство, действуют электростатические силы Кулона.

    Если в каждой точке пространства действует сила, то говорят, что в этом пространстве существует силовое поле.

    Поле наряду с веществом является формой материи.

    Если поле стационарно, то есть не меняется во времени, и создается неподвижными электрическими зарядами, то такое поле называется электростатическим.

Электростатика изучает только электростатические поля и взаимодействия неподвижных зарядов.

Для характеристики электрического поля вводят понятие напряженности . Напряженность ю в каждой точке электрического поля называется вектор , численно равный отношению силы, с которой это поле действует на пробный положительный заряд, помещенный в данную точку, и величины этого заряда, и направленный в сторону действия силы.

Пробный заряд , который вносится в поле, предполагается точечным и часто называется пробным зарядом.

- Он не участвует в создании поля, которое с его помощью измеряется.

Предполагается, что этот заряд не искажает исследуемого поля, то есть он достаточно мал и не вызывает перераспределения зарядов, создающих поле.

Если на пробный точечный заряд поле действует силой, то напряженность
.

Единицы напряженности:

СИ:

СГСЭ:

В системе СИ выражение для поля точечного заряда :

.

В векторной форме:

Здесь – радиус-вектор, проведенный из зарядаq , создающего поле, в данную точку.

Т
аким образом,векторы напряженности электрического поля точечного заряда q во всех точках поля направлены радиально (рис.1.3)

- от заряда, если он положительный, «исток»

- и к заряду, если он отрицательный «сток»

Для графической интерпретации электрического поля вводят понятие силовой линии или линии напряженности . Это

    кривая , касательная в каждой точке к которой совпадает с вектором напряженности .

    Линия напряженности начинается на положительном заряде и заканчивается на отрицательном.

    Линии напряженности не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление.

В электростатике одним из основополагающих является закон Кулона. Он применяется в физике для определения силы взаимодействия двух неподвижных точечных зарядов или расстояния между ними. Это фундаментальный закон природы, который не зависит ни от каких других законов. Тогда форма реального тела не влияет на величину сил. В этой статье мы расскажем простым языком закон Кулона и его применение на практике.

История открытия

Ш.О. Кулон в 1785 г. впервые экспериментально доказал взаимодействия описанные законом. В своих опытах он использовал специальные крутильные весы. Однако еще в 1773 г. было доказано Кавендишем, на примере сферического конденсатора, что внутри сферы отсутствует электрическое поле. Это говорило о том, что электростатические силы изменяются в зависимости от расстояния между телами. Если быть точнее — квадрату расстояния. Тогда его исследования не были опубликованы. Исторически сложилось так, что это открытие было названо в честь Кулона, аналогичное название носит и величина, в которой измеряется заряд.

Формулировка

Определение закона Кулона гласит: В вакууме F взаимодействия двух заряженных тел прямо пропорционально произведению их модулей и обратно пропорционально квадрату расстояния между ними.

Звучит кратко, но может быть не всем понятно. Простыми словами: Чем больший заряд имеют тела и чем ближе они находятся друг к другу, тем больше сила.

И наоборот: Если увеличить расстояние межу зарядами — сила станет меньше.

Формула правила Кулона выглядит так:

Обозначение букв: q — величина заряда, r — расстояние межу ними, k — коэффициент, зависит от выбранной системы единиц.

Величина заряда q может быть условно-положительной или условно-отрицательной. Это деление весьма условно. При соприкосновении тел она может передаваться от одного к другому. Отсюда следует, что одно и то же тело может иметь разный по величине и знаку заряд. Точечным называется такой заряд или тело, размеры которого много меньше, чем расстояние возможного взаимодействия.

Стоит учитывать что среда, в которой расположены заряды, влияет на F взаимодействия. Так как в воздухе и в вакууме она почти равна, открытие Кулона применимо только для этих сред, это одно из условий применения этого вида формулы. Как уже было сказано, в системе СИ единица измерения заряда — Кулон, сокращено Кл. Она характеризует количество электричества в единицу времени. Является производной от основных единиц СИ.

1 Кл = 1 А*1 с

Стоит отметить, что размерность 1 Кл избыточна. Из-за того что носители отталкиваются друг от друга их сложно удержать в небольшом теле, хотя сам по себе ток в 1А небольшой, если он протекает в проводнике. Например в той же лампе накаливания на 100 Вт течет ток в 0,5 А, а в электрообогревателе и больше 10 А. Такая сила (1 Кл) примерно равна действующей на тело массой 1 т со стороны земного шара.

Вы могли заметить, что формула практически такая же, как и в гравитационном взаимодействии, только если в ньютоновской механике фигурируют массы, то в электростатике — заряды.

Формула Кулона для диэлектрической среды

Коэффициент с учетом величин системы СИ определяется в Н 2 *м 2 /Кл 2 . Он равен:

Во многих учебниках этот коэффициент можно встретить в виде дроби:

Здесь Е 0 = 8,85*10-12 Кл2/Н*м2 — это электрическая постоянная. Для диэлектрика добавляется E — диэлектрическая проницаемость среды, тогда закон Кулона может применяться для расчетов сил взаимодействия зарядов для вакуума и среды.

С учетом влияния диэлектрика имеет вид:

Отсюда мы видим, что введение диэлектрика между телами снижает силу F.

Как направлены силы

Заряды взаимодействуют друг с другом в зависимости от их полярности — одинаковые отталкиваются, а разноименные (противоположные) притягиваются.

Кстати это главное отличие от подобного закона гравитационного взаимодействия, где тела всегда притягиваются. Силы направлены вдоль линии, проведенной между ними, называют радиус-вектором. В физике обозначают как r 12 и как радиус-вектор от первого ко второму заряду и наоборот. Силы направлены от центра заряда к противоположному заряду вдоль этой линии, если заряды противоположны, и в обратную сторону, если они одноименные (два положительных или два отрицательных). В векторном виде:

Сила, приложенная к первому заряду со стороны второго обозначается как F 12. Тогда в векторной форме закон Кулона выглядит следующим образом:

Для определения силы приложенной ко второму заряду используются обозначения F 21 и R 21 .

Если тело имеет сложную форму и оно достаточно большое, что при заданном расстоянии не может считаться точечным, тогда его разбивают на маленькие участки и считают каждый участок как точечный заряд. После геометрического сложения всех получившихся векторов получают результирующую силу. Атомы и молекулы взаимодействуют друг с другом по этому же закону.

Применение на практике

Работы Кулона очень важны в электростатике, на практике они применяется в целом ряде изобретений и устройств. Ярким примером можно выделить молниеотвод. С его помощью защищают здания и электроустановки от грозы, предотвращая тем самым пожар и выход из строя оборудования. Когда идёт дождь с грозой на земле появляется индуцированный заряд большой величины, они притягиваются в сторону облака. Получается так, что на поверхности земли появляется большое электрическое поле. Возле острия молниеотвода оно имеет большую величину, в результате этого от острия зажигается коронный разряд (от земли, через молниеотвод к облаку). Заряд от земли притягивается к противоположному заряду облака, согласно закону Кулона. Воздух ионизируется, а напряженность электрического поля уменьшается вблизи конца молниеотвода. Таким образом, заряды не накапливаются на здании, в таком случае вероятность удара молнии мала. Если же удар в здание и произойдет, то через молниеотвод вся энергия уйдет в землю.

В серьезных научных исследованиях применяют величайшее сооружение 21 века – ускоритель частиц. В нём электрическое поле выполняет работу по увеличению энергии частицы. Рассматривая эти процессы с точки зрения воздействия на точечный заряд группой зарядов, тогда все соотношения закона оказываются справедливыми.

Полезное