Главный подкорковый центр вегетативной нервной системы. Центры парасимпатического отдела вегетативной нервной системы

Центральная часть представлена как сегментарными , так и надсегментарными центрами . Аксоны нейронов сегментарныхцентров, выходя из спинного, продолговатого и среднего мозга, на периферии формируют вегетативные нервы. Надсегментарные центры с периферией непосредственно не связаны, аксоны их нейронов заканчиваются на нейронах других нервных центров, в том числе сегментарных вегетативных.

Надсегментарные центры продолговатого и среднего мозга:

а) усиливают тоническое сокращение разгибательных мышц;

б) поддерживают тонус сгибателей проксимальных суставов конечностей;

в) обеспечивают статические и статокинетические рефлексы.

Повреждения спинного мозга происходят часто, особенно у молодых мужчин, в результате автомобильных катастроф, спортивных травм, неосторожного обращения с огнестрельным оружием или ранений при участии в военных действиях.Обратимое угнетение двигательных и вегетативных рефлексов после повреждения спинного мозга и исключение его связи с головным мозгом называется спинальным шоком . В экспериментах на животных спинальный шок возникает после полной перерезки спинного мозга. Это явление заключается в том, что все центры ниже перерезки временно перестают функционировать (исчезают рефлексы).О механизмах развития спинального шока и восстановления рефлексов известно мало. По-видимому, перерезка нисходящих путей отключает множество возбуждающих сигналов, поступающих к спинальным эфферентным нейронам из вышележащих отделов ЦНС (нарушается один из основных принципов координации – принцип субординации, или иерархических отношений между нервными центрами). При повторной перерезке спинного мозга ниже места первой перерезки в период восстановления рефлексов спинальный шок не возникает, рефлекторная деятельность спинного мозга сохраняется.Нарушение рефлекторной деятельности после пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10–15 мин.,У обезьян первые признаки восстановления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека – через несколько месяцев.Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими.

2. Реципрокная иннервация мышц-антагонистов, её механизмы, значение.

Коллатераль аксона, кт связан с другой осуществляемого рефлекса(например, сгибания) одновременно возбуждает тормозной нейрон, направляющий аксон к мотонейрону несовместимой реакции(например, мышцы-разгебателя). Так осуществляется реципрокная иннервация мышц-антогонистов.

Реципрокная иннервация (от лат. reciprocus - возвращающийся, обратный, взаимный), сопряжённая иннервация, рефлекторный механизм координации двигательных актов, обеспечивающий согласованную деятельность мышц-антагонистов (например, одновременное сокращение группы сгибателей сустава и расслабление его разгибателей). Сущность Реципрокная иннервация заключается в том, что рефлекторное возбуждение в группе нервных клеток, иннервирующих определённые мышцы, сопровождается реципрокным, т. е. сопряжённым, торможением активности в других клетках, функционально связанных с антагонистами, что ведёт к их расслаблению. Т. о., центры мышц-антагонистов - сгибателей и разгибателей - находятся в противоположном состоянии при выполнении многих двигательных актов. Механизм Реципрокная иннервация обеспечивает возможность осуществления организмом координированных движений (ходьба, чесание, движения глаз, трудовые движения и многие др.). Реципрокная иннервация была впервые обнаружена в 1876 П. А. Спиро, учеником И. М. Сеченова, и детально проанализирована английским физиологом Ч. Шеррингтоном, который и ввёл этот термин. Как показали Н. Е. Введенский и А. А. Ухтомский, этот механизм не жестко фиксирован, а динамичен, вследствие чего мышцы, являющиеся антагонистами при совершении одних движений, при участии в других сокращаются одновременно, т. е. ведут себя как синергисты. Прямое исследование процессов возбуждения и торможения в одиночных нервных клетках, проводящееся с помощью микроэлектродной техники с 50-х гг. 20 в., позволило понять особенности механизма Реципрокная иннервация на клеточном уровне. Ведущую роль в формировании сопряжённых отношений между двигательными нейронами, иннервирующими мышцы-антагонисты, играют вставочные нейроны, выполняющие в нервной системе функцию релейных переключателей и интегрирующих элементов.

3. Понятие о тонусе мышц. Виды тонуса. Основные принципы его
поддержания. Этапы становления тонуса в онтогенезе.

Тонус - умеренное напряжение мышц, когда они находятся в состоянии относительного покоя. Тонус поддерживается за счет нервных импульсов, поступающих из центральной нервной системы даже в состоянии покоя. Источники импульсов - мотонейроны (альфа и гамма) передних рогов спинного мозга. Они должны сами находиться в состоянии тонуса.

Причины тонуса нейронов- рефлекторное происхождение тонуса мышц - мотонейроны получают импульсы от рецепторов скелетных мышц. Доказательство: исчезновение тонуса скелетных мышц при перерезке задних корешков спинного мозга; действие гуморальных факторов - активность мотонейронов поддерживается за счет действия метаболитов (например, СО2, лактат - накапливается в спинном мозге, возбуждая нейроны); влияние вышележащих отделов центральной нервной системы - они поддерживают тонус мышц и регулируют его уровень и распределение. Доказательство: удаление головного мозга у лягушки.

Тем не менее, любое движение требует создания для него удобной позы и адекватного положения тела в пространстве. Поэтому сочетание фазных сокра-

щений одних мышц и тонических – других обеспечивает гармонию движения.В каждом движении участвуют 3 группы мышц: 1) основные; 2) вспомогательные, обеспечивающие синкинезии – сопутствующие движения, например, движения рук при ходьбе; 3) позные – мышцы шеи, спины и

др., поддерживающие удобное для движения взаимное положение частей тела.

Механизмы регуляции движений и тонуса являются рефлекторными. Классическое доказательство этого положения – опыт Бронжеста:при перерезке у лягушки задних корешков спинного мозга, т. е. афферентных нервных стволов, связанных с задней лапкой, естественное взаимоположение бедра и голени нарушается. Следовательно, тоническое сокращение мышц конечности, создающее определенную позу, возможно лишь при сохранении целостности рефлекторной дуги.Регуляция движений – это выключение лишних, ненужных компонентов – «избыточных степеней свободы» (Н. А. Бернштейн) за счет процессов координации. Одним из механизмов ее является реципрокная иннервациямышц-антагонистов, заключающаяся в сопряженном торможении центроводной из двух мышц-антагонистов при возбуждении центров другой мышцы.Так, при сгибании конечности возбуждение моторного центра мышцы-сгибателя сопровождается торможением центра мышцы-разгибателя.В регуляции движений важную роль играют обратные связи , или«сензорные коррекции», по Н. А. Бернштейну (1935). Их источником являются плохо осознаваемые сигналы проприорецепторов («темное мышечноечувство», по И. М. Сеченову). Направление движений оценивается с помощью зрительного анализатора. Его роль возрастает при патологическом ограничении сигналов от проприорецепторов, что может быть продемонстрировано на больных со спинной сухоткой. У этих больных развиваютсяструктурные изменения задних рогов спинного мозга, куда обычно поступают проприоцептивные сигналы. Поэтому попытка двигаться с закрытымиглазами им не удается: в этом случае отключены не один, а два важнейшихисточника обратной связи, необходимой для регуляции движений.Роль обратных связей в регуляции движений используется в медицинской практике (Н. М. Яковлев, 1981). Так, восстановление движений удетей при церебральном параличе ускоряется, если больной слышит звучащую игрушку или видит аплодирующую ему куклу. Оба сигнала (звуко-

вой и оптический) появляются лишь в том случае, если ребенок с достаточным усилием сдавливает подошвой ноги при ходьбе резиновую игрушку, а мышечные биопотенциалы достаточны для автоматического включения механизма, приводящего в движение куклу.

Этапы регуляции движений:

Формирование побуждения , или замысла движения происходит в высших отделах ЦНС (мотивационные и ассоциативные зоны коры)и определяет целенаправленность двигательного акта, его стратегию.Субъективно это воспринимается как двигательная мотивация – стремление к удовлетворению какой-либо доминирующей потребности: пищевой,оборонительной, половой, трудовой, творческой и др.

Выбор программы , или тактики движения есть выбор зафиксированной последовательности сокращений и расслаблений определенных мышечных групп. Структурами программного обеспечения в ЦНС являются базальные ганглии (врожденные, генетически детерминированные программы) и мозжечок (приобретенные программы). Первые – программы ползания, ходьбы, бега – реализуются у человека не сразу после рождения, а по мере созревания мозговых структур. Вторые – приобретенные программы речи, письма, трудовых и спортивных движений – формируются из готовых врожденных «блоков» на основе обучения (условных рефлексов), или

опыта. По мере овладения навыками уменьшается число участвующих мышц, повышается доля пассивных механизмов, например, силы тяжести, повышается экономичность движений, ограничивается утомление.

Исполнение программы движения связанно с активацией соответствующих двигательных единиц. Исполнительными структурами ЦНС, обеспечивающими выполнение движения, являются моторные зоны коры, ствол мозга и спинной мозг. Движения могут быть произвольными и не-

произвольными, осознанными и автоматизированными. Две эти классификации не тождественны. Так, произвольные движения могут включать осознанные компоненты, обычно контролируемые сознанием, и автоматизированные, в основном обеспечиваемые без постоянного контроля сознания. К последним относятся движения, совершаемые по врожденным программам, а также хорошо «усвоенные» приобретенные формы движений.


Похожая информация.


Центры ВНС расположены в спинном и головном мозге. Их следует представлять как согласованно действующие ансамбли нейронов, ответственных за выполнение той или иной функции. Вегетативные центры разделяют на высшие (надсегментарные) и низшие (сегментарные) . Координирующее влияние сегментарных центров распространяется на отдельные функции и осуществляется через определенные нервы. Надсегментарные центры контролируют деятельность сегментарных вегетативных центров, осуществляют их интеграцию с центрами соматической нервной системы и другими регулирующими системами – эндокриннной, кровеносной и т. д.

Сегментарные вегетативные нервные центры образованы телами нейронов, которые по своему положению в рефлекторной дуге являются вставочными.

По функции выделяют симпатические и парасимпатические вегетативные центры.

По топографии различают центры головного мозга (краниальные ) и спинного мога (спинальные ).

В отличие от строго сегментарного расположения соматических (анимальных) центров, для вегетативных нервных центров характерна очаговость. Имеются четыре таких очага:

1. мезенцефалический (парасимпатический) – добавочное ядро III пары черепных нервов, nucl. accessorius .

2. Понто-бульбарный (парасимпатический) – верхнее и нижнее слюноотделительные ядра VII и IX пары – nucl. salivatorius superior, nucl. salivatorius inferior, и вегетативное ядро X пары – nucl. dorsalis n. vagi .

Оба эти очага являются краниальными.

3. Тораколюмбальный (симпатический) – в боковых рогах спинного мозга (nucl. intermediolaterales ) на протяжении сегментов С 8 , Th 1 -L 2 .

4. Сакральный (парасимпатический) – nucl. parasympathici sacrales, в сером веществе сегментов S 2 -S 4 .

Перечисленные очаги, или сегментарные вегетативные центры, находятся под контролирующим и коррегирующим воздействием надсегментарных (высших) центров, которые расположены в стволе мозга, мозжечке, подкорковых структурах и в коре полушарий головного мозга. Эти центры не являются специализированными (симпатическими или парасимпатическими), а объединяют в себе регуляцию обоих отделов вегетативной нервной системы. Так, в стволе головного мозга существенную роль в регуляции вегетативных функций играет ретикулярная формация, formatio reticularis, (около 100 ядер), ядра которой формируют дыхательный, сосудодвигательный, пищеварительный центры. В мозжечке – центры, регулирующие трофику кожи, сосудодвигательные рефлексы, сокращение мышц, поднимающих волосы, mm. arrectores pili . Важную роль в обеспечении вегетативных функций отводят гипоталамической области. Здесь сосредоточены центры, ответственные за поддержание постоянства внутренней среды организма (гомеостаз). Благодаря наличию обширных нервных и сосудистых связей между гипоталамусом и гипофизом, обе эти структуры объединяют в единую гипоталамо-гипофизарную систему, осуществляющую нейро-гуморальную регуляцию деятельности всех органов растительной жизни, желез внутренней секреции. В подкорковых базальных ядрах (corpus striatum et corpus amygdaloideum ) содержатся центры терморегуляции, слюно- и слезоотделения.


Особое место среди высших вегетативных центров занимает лимбическая система . Это – структуры среднего, промежуточного и конечного мозга (сводчатая извилина, миндалевидное тело, мозговая полоска таламуса, гипоталамус, гиппокамп, свод, прозрачная перегородка и др.). все эти структуры объединяют в общее понятие – висцеральный мозг, в который поступает весь поток сенсорной информации и на базе ее первичного синтеза формируются определенные биологические потребности – мотивации, обеспечивается эмоциональная окраска как вегетативных так и соматических реакций организма.

И, наконец, корковые вегетативные центры , которые сосредоточены преимущественно в лобных и теменных долях и осуществляют объединение (интеграцию) вегетативных и анимальных функций всего организма.

Как отмечалось выше, в основе взаимоотношения вегетативных центров лежит принцип иерархии – объем регулирующего влияния тем больше, чем выше положение центра, причем действие высших центров реализуется не только через низшие, но и через другие регулирующие системы – эндокринную, кровеносную (например, гипоталамо-гипофизарная система).


Центральная часть вегетативной нервной системы

Центры вегетативной нервной системы подразделяют на сегментарные (низшие) и надсегментарные (высшие или координационные). Сегментарные центры прямо связаны с эффекторными (рабочими) органами. Они рассмотрены при описании симпатического и парасимпатического отделов ВНС. Надсегментарные координационные центры осуществляют взаимодействие между ядерными и корковыми образованиями спинного и головного мозга.

Надсегментарные центры располагаются в ретикулярной формации ствола мозга, в мозжечке, гипоталамусе, лимбической системе и в коре больших полушарий. Таким образом, в регуляцию вегетативных реакций вовлекается целая система центров, представленных на всех уровнях головного мозга. Высшие центры осуществляют тонкую координацию деятельности всех трех частей автономной нервной системы.

Когда речь идет о высших центрах, следует помнить, что здесь понятие «нервный центр» - скорее не структурное, а функциональное, так как ни в одном отделе мозга нет компактных образований с четкими границами, которые бы регулировали исключительно вегетативные функции. В пределах одного центра при раздражении рядом лежащих точек (участков) можно наблюдать и вегетативные и анимальные (соматические) реакции.

Влияние низших центров распространяется на отдельные вегетативные реакции (изменения диаметра зрачка, усиление и подавление потоотделения и т.п.) и передается по определенному нерву. Регуляторные влияния высших центров значительно шире, они осуществляются через сегментарные центры, а также путем взаимодействия с другими регуляторными системами (эндокринной, иммунной). Кроме того, надсегментарные центры осуществляют интеграцию вегетативных и соматических реакций, изменяя функциональную активность висцеральных систем, приспосабливая их к конкретным физическим и психическим нагрузкам на организм.

Ретикулярная формация – филогенетически древняя структура, протянутая по всему ходу мозгового ствола от начала продолговатого до базальных областей промежуточного мозга. Дорзальную сторону ствола мозга занимают чувствительные ядра, а вентральную – двигательные. И те, и другие ядра характеризуются хорошо различимыми границами. Между этими двумя видами ядер располагается ретикулярная формация. По строению она отличается от остальных частей мозга тем, что в ней нервная ткань не разделена на серое и белое вещество. Здесь нервные волокна, идущие в различных направлениях, образуют сеть, в которой располагаются группы нервных клеток. Такое своеобразное строение дало повод О. Дейтерсу назвать этот участок мозга сетчатым образованием (ретикулярной формацией). У человека в ретикулярной формации выделяют 14 ядер. Все они характеризуются низкой плотностью расположения нейронов, высоким глиальным коэффициентом, не имеют четких границ, незаметно переходят в окружающие структуры. Нейроны сильно отличаются по размерам (от 5 до 120 мкм.), основная их масса представлена изодендритическими клетками с редкими маловетвистыми отростками, характеризующимися высокой концентрацией синаптических контактов на всем протяжении. Морфология нейронов ретикулярной формации ствола существенно меняется с возрастом. При старении происходят деградация дендритов, а также изменения в телах и аксонах, уменьшаются размеры перикарионов и диаметр аксонов.

Ретикулярная формация является сложным рефлекторным центром. В ромбовидном мозге в составе ретикулярной формации находятся нейроны, образующие центры регуляции жизненно важных висцеральных функций – дыхательный и сосудодвигательный (синонимы: сердечно-сосудистый, циркуляторный).

Дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. На основании изучения электрической активности отдельных клеток дыхательного центра выделены инспираторные и экспираторные нейроны, которые генерируют потенциалы действия: первые в начале вдоха, а вторые в фазе выдоха. Большинство инспираторных нейронов располагается вблизи ядра одиночного тракта (вегетативная чувствительность блуждающего нерва), меньшая их часть – у обоюдного ядра. Экспираторные нейроны находятся между этими двумя зонами инспираторных клеток и поблизости от заднего ядра лицевого нерва.

Нейронам дыхательного центра свойственен автоматизм (периодичность разрядов), определяемый спецификой ионных механизмов их клеточных мембран. Периодичность разрядов может быть обусловлена и тормозными влияниями между двумя типами клеток: появление активности инспираторных нейронов вызывает торможение разрядов экспираторных и наоборот. Смена фаз дыхания может происходить и рефлекторно за счет афферентных сигналов от рецепторов легких. В регуляции функций дыхательного центра могут участвовать также гипоталамус и лимбическая система, которые изменяют его деятельность при эмоциональных реакциях человека. Кора больших полушарий обеспечивает произвольную регуляцию дыхания и его коррекцию применительно к конкретным видам жизнедеятельности.

Фазы дыхательного цикла влияют на тонус блуждающих нервов, который повышается во время выдоха, что ведет к урежению ритма сердца.

Сердечно-сосудистый (циркуляторный) центр продолговатого мозга является основным центром, регулирующим деятельность сердца, тонус сосудов (АД) и выделения катехоламинов мозговым веществом надпочечников. Он расположен на дне и в верхней части четвертого желудочка. В составе этого центра имеются прессорные зоны, вызывающие увеличение тонуса сосудов, повышающие АД и тахикардию, и участки с противоположным действием (депрессорные). Деление на указанные зоны довольно условно, так как они перекрываются: в прессорной зоне обнаруживаются депрессорные нейроны и наоборот. В целом ретикулярная формация характеризуется, как уже отмечалось, рыхлым расположением нейронов. В ней даже ядра не имеют четких границ и незаметно переходят в соседние области.

Сердечно-сосудистый центр имеет специфику своей эффекторной части. Эффекторные волокна его нейронов, как и дыхательного центра, спускаются в грудной отдел спинного мозга, но заканчиваются там не на мотонейронах, как в случае эффекторных волокон дыхательного центра, а на преганглионарных нейронах симпатической нервной системы. Поэтому тонус сосудов регулируется только через симпатическую (сосудосуживающую) систему: её активное состояние вызывает сужение сосудов, а торможение – противоположный эффект. Исключение составляют сосуды половых органов, имеющие симпатическую и парасимпатическую иннервацию.

Тонус симпатических сосудосуживающих нервов, берущих начало от сердечно-сосудистого центра, зависит от афферентных импульсов: возбуждение механорецепторов сосудов при повышении АД вызывает торможение активности прессорных нейронов сосудодвигательного центра и как следствие – рефлекторное снижение сосудистого тонуса. Напротив, при повышении давления в системе полых вен происходит усиление активности сосудодвигательного центра и сужение сосудов.

Регуляторное влияние циркуляторного центра на сердце выражается в следующем. Через симпатические нервы он увеличивает частоту и силу сокращений сердца, а через блуждающий нерв – противоположное действие. Кроме того, при возбуждении прессорных зон циркуляторного центра повышается активность симпатоадреналовой системы и как следствие увеличивается тонус сосудов, сердечная деятельность и выделение гормонов из мозгового вещества надпочечников. Раздражение депрессорных зон вызывает угнетение симпатоадреналовой системы.

Деятельность сосудодвигательного центра сопряжена с функцией обоюдного ядра блуждающего нерва, которое в норме снижает частоту сокращений сердца. Как следствие их взаимодействия при сужении сосудов одновременно увеличивается сердечный ритм и наоборот.

Ретикулярная формация среднего и промежуточного мозга оказывает влияние на функции эндокринных желез.

Кроме рефлекторной регуляции таких важнейших процессов, как кровообращение, дыхание, глотание, ретикулярная формация участвует в:

Регуляции уровня осознания корой сигналов, в том числе поступающих от висцеральных рецепторов;

Придании аффективно-эмоциональных аспектов сенсорным сигналам за счет передачи афферентной информации в лимбическую систему;

Контроле деятельности двигательных центров спинного мозга.

Помимо уже упомянутых функций, ретикулярная формация в результате обработки информации, поступающей из внутренней среды, посылает сигналы в кору больших полушарий, вызывающие ее пробуждение от сна. Разрушение этих восходящих путей переводит животных в сноподобное коматозное состояние.



Центра́льная не́рвная систе́ма (ЦНС) - основная часть нервной системы животных и человека, состоящая из нейронов и их отростков; у беспозвоночных представлена системой тесно связанных между собой нервных узлов (ганглиев), у позвоночных животных и людей - спинным и головным мозгом.

Главная и специфическая функция ЦНС - осуществление простых и сложных рефлексов. У высших животных и человека низшие и средние отделы ЦНС - спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок - регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС - кора больших полушарий головного мозга и ближайшие подкорковые образования - в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Спинной мозг. Филогенетически он является наиболее древним отделом центральной нервной системы. В сером веществе спинного мозга находятся центры многочисленных спинальных рефлексов, связанных с раздражением отдельных сегментов тела животного - кожи, мышц, внутренних органов. Отдельные центры спинного мозга иннервационно связаны с соответствующими участками как кожной поверхности, так и скелетной мускулатуры (метамерно). Благодаря этому спинальные рефлексы, к числу которых относятся различные оборонительные движения, мочеиспускание, дефекация, сосудистые реакции и т. п., могут протекать автоматически, без участия центральных отделов головного мозга.

Спинной мозг является также органом проведения нервных возбуждений от различных участков кожи к головному мозгу и обратно - от головного мозга к мышцам. Эта проводниковая функция спинного мозга осуществляется с помощью составляющих белое вещество мозга нервных волокон.

Различают восходящие и нисходящие нервные пути, состоящие из длинных волокон, по которым возбуждение передается от периферических отделов нервной системы к головному мозгу и от головного мозга к периферии, и группы коротких волокон, соединяющих два-три близлежащих сегмента спинного мозга. Наличие этой сложной системы проводящих путей обеспечивает участие спинного мозга в координации различных движений.

Головной мозг состоит: а) из мозжечка и б) из стволовой части, филогенетически более древних центров, расположенных в продолговатом, заднем, среднем и промежуточном мозге, и в) больших полушарий, наделенных филогенетически наиболее новым образованием - корой больших полушарий головного мозга.

Мозжечок, связанный проводящими путями со всеми другими отделами центральной нервной системы, имеет своей основной функцией координацию движений, а также поддержание нормального тонуса мышц. Удаление или поражение мозжечка у животных вызывает: а) резкое падение тонуса мышц, которые становятся вялыми; б) быструю утомляемость животного при движениях; в) нарушение координации движений, которые становятся неточными и неловкими; г) дрожательные движения конечностей и головы, мешающие животному правильно выполнять отдельные действия.

Продолговатый мозг и примыкающий к нему так называемый варолиев мост содержат центры дыхательных, жевательных, глотательных движений, сердечной деятельности, регуляции обмена веществ, а также ряда защитных рефлексов - чихания, кашля, моргания, слезоотделения, сужения и расширения зрачков, элементарных защитных рефлексов (поворотов тела, настораживания), рефлексов положения тела, связанных с возбуждением вестибулярного аппарата и с изменениями тонуса шейных мышц, и т. д.

Средний мозг состоит из четверохолмия и ножек мозга; в состав последних входят красные ядра и черное вещество, в которых расположены как чувствительные, так и двигательные центры. К функциям среднего мозга относятся: а) обеспечение равномерного распределения мышечного тонуса; б) статические рефлексы (выпрямительные рефлексы, благодаря которым восстанавливается нормальная поза тела при нарушении его правильного положения в пространстве); в) статокинетические рефлексы, возникающие в связи с ускорением прямолинейного или вращательного движения тела: нистагм (подергивание) головы и глаз, движения туловища и конечностей в сторону, противоположную только что сделанному повороту (при остановке вращения, прыжках и т. д.); г) ориентировочные рефлексы на световые и звуковые раздражители, выражающиеся в движениях глаз, поворотах головы в сторону раздражителя и т. п.; д) рефлексы настораживания, возникающие при сильных внезапных раздражениях и управляемые четверохолмием.

Промежуточный мозг, в котором расположены так называемые зрительные бугры, бледное тело и подбугровая область, является органом сложных врожденных координированных движений (безусловных рефлексов и инстинктов).

В зрительные бугры приходят все центростремительные нервы, доставляя сюда возбуждения от всех без исключения рецепторов. С помощью специальных волокон они имеют связь с корой головного мозга: все центростремительные сигналы, получаемые корой головного мозга, обязательно проходят через зрительные бугры. Поражение зрительных бугров приводит к расстройству или даже к полной потере чувствительности.

Бледное тело является средоточием двигательных центров, управляющих разнообразными движениями. Отсюда исходят многочисленные центробежные нервы к различным мышечным группам. Поражение бледного тела приводит к расстройству ряда движений или даже к двигательным параличам.

Бледное тело связано соединительными волокнами с зрительными буграми, благодаря чему большинство рефлекторных дуг замыкается в промежуточном мозге, не проходя через кору головного мозга: центростремительные нервные импульсы из зрительных бугров прямо передаются на двигательные центры бледного тела, что и приводит к осуществлению соответствующей двигательной реакции организма. Примером могут служить автоматические движения при ходьбе, беге, при пищевых рефлексах и т. д.

Подбугровая область является высшим органом вегетативной нервной системы. В ней сосредоточены центры обмена веществ в организме, сосудо-двигательные центры, центр теплорегуляции, поддерживающий постоянную температуру тела, и т.д. Благодаря подбугровой области промежуточный мозг осуществляет вегетативные сдвиги, связанные с эмоциональными процессами: изменение частоты дыхания и сердечных сокращений, покраснение или побледнение лица, изменение в деятельности желез внутренней секреции и т.д.

Ретикулярная система. Так называется (от лат. ретикула- сеть) особое скопление нервных клеток, рассеянных на всем протяжении стволовой части мозга между пучками его волокон. Иногда ее называют центрэнцефалической системой ввиду той особой роли, которую она играет в работе головного мозга. Нервные клетки ретикулярной формации связаны со всеми отделами коры головного мозга и в то же время со всеми периферическими нервными аппаратами. По И. П. Павлову, центр-энцефалическая (подкорковая) система регулирует (повышает или понижает) тонус тех или иных корковых отделов головного мозга. . В последующем очень тонкие электроэнцефалические эксперименты американских физиологов Пенфильда и Джаспера подтвердили это положение И. П. Павлова. Было доказано наличие двух путей проведения возбуждения от периферии к центральным отделам коры головного мозга. Один, специфический, путь идет через специальные нейроны системы анализаторов (кожного, зрительного и т. д.), обеспечивая тонкую дифференциацию раздражителей и в конечном итоге их отражение в виде ощущений и восприятий. Другой, неспецифический, путь идет от рецепторов через ретикулярную систему; приходящие по этому пути в кору головного мозга возбуждения и содействуют повышению тонуса коры при раздражении тех или иных рецепторов. Вместе с тем было показано, что и кора воздействует на ретикулярную формацию.

Вегетативная нервная система представляет собой своеобразный отдел, регулирующий деятельность внутренних органов: сердца, легких, кровеносных сосудов, желез внутренней секреции, желудка, кишечника и т. д. Вегетативные центры расположены в различных отделах центральной нервной системы - в спинном, продолговатом, среднем и промежуточном мозге.

Функция вегетативной нервной системы заключается в повышении или понижении жизнедеятельности иннервируемых ею внутренних органов. Вегетативная нервная система состоит из двух отделов, оказывающих противоположное влияние на внутренние процессы в организме,- симпатического и парасимпатического. Каждый внутренний орган иннервируется одновременно волокнами как симпатического, так и парасимпатического отделов вегетативной нервной системы. Первые обычно усиливают, вторые угнетают деятельность органов.

Вегетативная нервная система не автономна. Ее деятельность протекает в тесной связи с деятельностью коры головного мозга, которая через симпатический и парасимпатический отделы вегетативной нервной системы регулирует деятельность внутренних органов в соответствии с характером внешних воздействий, а также в связи с изменениями в деятельности других внутренних органов. В свою очередь, изменения в деятельности внутренних органов оказывают через посредство вегетативной нервной системы свое влияние на деятельность коры головного мозга.

Морфологически и функционально выделяют два отдела вегетативной нервной системы:

Симпатическую и

Парасимпатическую нервную систему.

Симпатическая система мобилизует силы организма в экстренных ситуациях, увеличивает трату энергетических ресурсов; парасимпатическая - способствует восстановлению и накоплению энергетических ресурсов.

Функция вегетативной нервной системы может нарушаться при различных заболевания: неврологических, психических, соматических, эндокринных. В зависимости от механизма, уровня поражения и его распространенности возникают полиморфные синдромы: вегетативная дистония, вегетативная недостаточность, ангиотрофалгические синдромы, синдромы, связанные с поражением отдельных вегетативных ганглиев или сплетений.

Вегетативная нервная система не управляется сознанием (отсюда ее другое название - автономная нервная система).

Таким образом, вегетативная нервная система обеспечивает поддержание постоянства внутренней среды, быстро реагируя на любые воздействия, нарушающие это постоянство. Она отвечает, в частности, за распределение кровотока, поддержание перфузии тканей, и состава внеклеточной жидкости, регуляцию энергетического обмена и обмена веществ.

Надсегментарные центры. Анатомия, функция, симптомы поражения

Надсегментарные центры являются смешанными, т. е. едиными для симпатической и парасимпатической частей вегетативной нервной системы. Они выполняют интегративную функцию для моторной, сенсорной и вегетативной систем, а также обеспечивают целесообразную адаптацию. Этот отдел представлен главным образом структурами, объединенными под названием гипоталамо-лимбико-ретикулярного комплекса (рис. 31).

Гипоталамус. Анатомия, функция, симптомы поражения. Гипоталамус (область промежуточного мозга) расположен книзу от таламуса и ограничен спереди хиазмой, сзади

– сосцевидными телами, по бокам

– ножками мозга и внутренними капсулами. Гипоталамус образует основание мозга, представляя собой дно III желудочка. Покрышечной частью свода, которая спускается от передней стенки межжелудочкового отверстия в направлении вперед и вниз к сосцевидным телам, он разделен на медиальную и латеральную зоны. Латеральная зона содержит пучки волокон, среди которых находятся волокна переднего мозга, зарождающиеся в базальной обонятельной области и идущие к среднему мозгу. Латеральные ядра серого бугра также относятся к латеральной зоне и занимают ее основание.


Рис. 31. Ядра гипоталамуса (по П. Дуусу):

1, 14 – паравентрикулярное ядро (nucl. paraventricularis ); 2 – преоптическое ядро (nucl. preopticus ); 3, 19 – дорсомедиальное ядро (nucl. dorsomedialis ); 4 – заднее ядро (nucl. posterior ); 5, 11 – супраоптическое ядро (nucl. supraopticus ); 6, 18 – вентромедиальное ядро (nucl. ventromedialis ); 7 – ядро воронки, или полулунное (nucl. infundibularis seu semilunaris ); 8, 16 – серобугорные ядра (nucl. tuberales ); 9 – нейрогипофиз (neurohypophysis ); 10 – сосцевидное тело (corpus mammillare ); 12, 20 – латеральная область (area lateralis ); 13 – промежуточная область (area intermedia ); 15 – перекрест (chiasma ); 17 – зрительный тракт (tractus opticus ); 21 – дорсальная область (area dorsalis ); 22 – свод (fornix )


В целом гипоталамус состоит из скопления высокодифференцированных ядер (32 пары). Достаточно хорошо очерчены ядра медиальной гипоталамической зоны; они обычно подразделяются на дорсальную, переднюю, медиальную (промежуточную), заднюю гипоталамические области (см. рис. 31).

В дорсальной области (area hypothalamica dorsalis ) находится ядро чечевицеобразной петли (nucl. ansae lenticularis ).

В передней области (area hypothalamica rostralis ) расположены переднее гипоталамическое (nucl. anterior hypothalami ), предоптические медиальное, латеральное и срединное ядра, супраоптическое и паравентрикулярное ядра. Клетки супраоптического и паравентрикулярного ядер переднего гипоталамуса напрямую связаны с задней долей гипофиза (нейрогипофизом) супра-оптико-гипофизарным путем (tr. supraopticohypophysialis ) и обеспечивают продукцию вазопрессина (супраоптическое ядро) и окситоцина (паравентрикулярное ядро). Выделяясь на терминалях аксонов этих клеток, гормоны поступают в кровь через капилляры нейрогипофиза. Вазопрессин влияет на водно-солевой обмен, окситоцин сокращает беременную матку и влияет на секрецию молока. Ядра передней области гипоталамуса также регулируют процессы теплового метаболизма.

Промежуточная область (area hypothalamica intermedia ) представлена ядром воронки, серым бугром, дорсомедиальным, вентромедиальным и дорсальным гипоталамическими ядрами. В латеральной части серого бугра локализуется центр голода, а в зоне вентромедиального ядра – центр насыщения. Эта часть гипоталамуса связана с передней долей гипофиза (adenohypophysis ) гипоталамо-гипофизарным путем (tr. hypothalamohypophysialis ). Ядра этого отдела вырабатывают нейрогормоны (рилизинг-факторы), поступающие в гипофиз по гипофизарной ножке и стимулирующие выделение гипофизом адренокортикотропного (АКТГ), соматотропного (СТГ), тиреотропного (ТТГ), липотропина (ЛТ), лютеинизирующего (ЛГ), фолликулостимулирующего (ФСГ) гормонов и тормозящие выработку пролактина и меланостимулина.

Задняя область (area hypothalamica posterior ) включает в себя, помимо прочих, медиальное и латеральное сосцевидные ядра (nucl. mammillares ) и заднее гипоталамическое ядро. Здесь импульсы автономной системы немедленно претворяются в интенсивные действия.

Проводящие пути и функция гипоталамуса. Гипоталамус – главный подкорковый центр интеграции вегетативных функций.

Афферентные связи гипоталамуса осуществляются по следующим путям: 1) медиальный пучок конечного мозга (связь с обонятельными луковицами и бугорком, гиппокампом, перегородкой, хвостатым ядром и др.); 2) волокна терминальной полоски (связь с миндалевидным телом); 3) таламо-, стрио– и паллидогипоталамические волокна (связь с экстрапирамидной системой); 4) центральный покрышечный путь (tr. tegmentalis centralis ), покрышечно-сосцевидный пучок; 5) мозжечково-гипоталамические волокна; 6) корково-гипоталамический путь (от орбитофронтальной, теменно-височной коры) и др.



Рис. 32. Наиболее важные эфферентные гипоталамические связи:

1 – сосцевидно-покрышечный пучок; 2 – задний продольный пучок; 3 – возвратный пучок (пучок Мейнерта); 4 – нейрогипофиз; 5 – бугорно-гипофизарный путь; 6 – супраоптико-гипофизарные волокна; 7 – супраоптическое ядро; 8 – паравентрикулярное ядро; 9 – переднее ядро таламуса; 10 – сосцевидно-таламический пучок; 11 – мозговая полоска таламуса; 12 – межталамическое сращение (adhesio interthalamica, massa intermedia )


Эфферентные пути представлены в основном следующими формациями: 1) дорсальный продольный пучок и 2) медиальный пучок конечного мозга. Проходя через несколько релейных станций, в особенности находящихся в ретикулярной формации, эти пучки связывают гипоталамус с парасимпатическими ядрами ствола мозга: автономные ядра в составе добавочного ядра глазодвигательного нерва (ядра Якубовича – Эдингера – Вестфаля) – миоз, слюноотделительное ядро (nucl. salivatorius ) – саливация, слезное ядро (nucl. lacrimalis ) – слезоотделение, дорсальное ядро блуждающего нерва (nucl. posterior nervi vagi ). Эфферентные пути включают также 3) сосцевидно-покрышечный пучок (fasciculus mammillotegmentalis ) – к ретикулярной формации ствола мозга, 4) сосцевидно-таламический пучок (fasciculus mammillothalamicus ) – связь с передним ядром таламуса (рис. 32).

Другие импульсы достигают автономных центров ствола мозга, регулирующих кровообращение, дыхание, пищеварение и другие функции. Гипоталамические импульсы оказывают влияние на двигательные ядра черепных нервов, важные для процессов еды и питья: двигательное ядро тройничного нерва (жевание), ядро лицевого нерва (мимика), заднее ядро блуждающего нерва (nucl. posterior nervi vagi ) (глотание), ядро подъязычного нерва (nucl. nervi hypoglossi ). Спинномозговые двигательные нейроны по ретикулоспинномозговому пути получают импульсы от гипоталамуса для обеспечения температурной регуляции (мышечная дрожь). В гипоталамусе находятся центры регуляции водно-солевого, жирового, углеводного видов обмена, температуры тела, потоотделения, насыщения и голода, эмоций, половой функции, а также основные центры, регулирующие эрго– и трофотропную функции. Через гуморальные механизмы гипоталамус оказывает воздействие на деятельность почек, матки, молочных желез, половых желез, надпочечников, щитовидной железы, метаболизм роста, лактацию, расщепление жиров и пигментацию.

Таким образом, прямо или опосредованно, гипоталамус связан со всеми отделами нервной и эндокринной систем и участвует в регуляции всех автономных функций.

В гипоталамусе выделяют зоны, имеющие эрготропную или трофотропную функциональную направленность. Хотя эти зоны достаточно широко распространены во всех отделах гипоталамуса, однако его передний отдел (предоптическая область) в большей степени несет трофотропную функцию, а задний (сосцевидные тела) – эрготропную.

Трофотропная функция направлена на поддержание постоянства внутренней среды организма. Она связана с периодом отдыха и, мобилизуя преимущественно вагоинсулярный аппарат, поддерживает процессы анаболизма, обеспечение энергетическим материалом и утилизацию метаболических продуктов. Трофотропная функция осуществляется главным образом парасимпатическим отделом вегетативной нервной системы. Стимуляция передних отделов гипоталамуса сопровождается усиленным потоотделением, расширением периферических сосудов, брадикардией, гипотонией, гиперсаливацией, усилением перистальтики кишечника.

Эрготропная функция гипоталамуса заключается в обеспечении различных форм психической и физической деятельности, вегетативной мобилизации, адаптации к меняющимся условиям внешней среды и поддерживается в основном симпатическим отделом. При стимуляции задних отделов гипоталамуса повышается артериальное давление, возникает тахикардия, тахипноэ, расширяются зрачки, отмечается повышение уровня глюкозы в крови.

Лимбическая система. Анатомия, функция, симптомы поражения . Кора каждого полушария мозга имеет границу или край (limbus ), которые обращены к мозолистому телу и окружают средний мозг. Структуры, примыкающие к этому отделу, объединены единым названием и включают в себя: миндалевидное тело, гиппокамп, передние ядра таламуса, поясную и парагиппокампальную извилины, сосцевидные тела, свод, обонятельную луковицу, обонятельные тракты (рис. 33).

Кора гиппокампа состоит из трех слоев, средний из которых характеризуется преобладанием крупных пирамидных клеток. Гиппокамп получает афферентные стимулы из лобно-височной коры, островка, поясной извилины, перегородки и ретикулярной формации среднего мозга. Эфферентные сигналы идут к сосцевидным телам, передним ядрам таламуса (сосцевидно-таламический пучок), в средний мозг и мост. Связи с другими компонентами осуществляются через так называемый большой круг Пейпеца – импульсы, возникающие в гиппокампе, передаются сосцевидным телам по дуге свода, далее по сосцевидно-таламическому пучку к передним ядрам таламуса, отсюда таламопоясная лучистость проецирует импульсы в поясную извилину, откуда подкорковый пучок ассоциативных волокон возвращает импульсы к коре гиппокампа, замыкая таким образом нейрональный круг. Сосцевидные тела играют в этой системе ключевую роль, так как связывают ее со средним мозгом – с задним ядром покрышки и верхним вестибулярным ядром (ядра Гуддена и Бехтерева) и с ретикулярной формацией. Кроме того, импульсы через переднее ядро таламуса по ассоциативным волокнам передаются к коре больших полушарий.


Рис. 33. Лимбическая кора:

1 – гиппокамп (hippocampus ); 2 – миндалевидное тело (corpus amigdaloideum ); 3 – сосцевидное тело (corpus mammillare ); 4 – перегородочное поле (area septalis ); 5 – передняя спайка (commissura anterior ); 6 – поясная извилина (gyrus cinguli ); 7 – серый покров, медиальная и латеральная продольные полоски (indusium griseum, stria longitudinalis et lateralis ); 8 – спайка свода (commissura fornicis ); 9 – энторинальная кора (area entorhinalis ); 10 – свод


Миндалевидное тело принимает афферентные импульсы от обонятельного бугорка, височных извилин и коры, прилегающей к глазнице, островка, таламуса, гипоталамуса и ретикулярной формации. Эфферентные пути направляются в височную кору, островок, гиппокамп, гипоталамус (малый круг: миндалевидное тело – терминальная полоска – гипоталамус).

Функция лимбической системы состоит в обеспечении различных форм деятельности (пищевое и сексуальное поведение, регуляция сна и бодрствования, памяти, внимания, эмоций), окончательный круг которых и степень зависимости от лимбической системы нельзя считать четко и окончательно очерченными.

Особую роль в регуляции сна отводят гипногенному лимбико-мезэнцефальному кругу: предоптическая область – заднее продырявленное вещество – верхний отдел среднего мозга.

Основным морфофункциональным субстратом для обеспечения механизма эмоций и аффективных компонентов инстинктивных побуждений служит круг Пейпеца (см. выше). Предполагается, что в возникновении эмоций центральная роль принадлежит гипоталамусу; в оформлении эмоций как субъективного ощущения принимает участие лимбическая система, а более тонко регулирует эмоциональное состояние кора головного мозга, в первую очередь лобные отделы.

Механизмы системы запоминания и хранения в памяти прежде всего, видимо, связаны с системой гиппокамп – свод – сосцевидное тело.

Гиппокамп регулирует двигательную функцию мочевого пузыря и желудочно-кишечного тракта, частоту дыхания, сердечных сокращений, уровень артериального давления, влияет на терморегуляцию и свертываемость крови.

Предполагается активирующее и синхронизирующее влияние лимбической системы на кору головного мозга и ингибирующее – на таламокортикальные отделы.

Таким образом, лимбическая система участвует в регуляции вегетативно-висцерально-гуморальных функций и осуществляет соматовегетативную интеграцию.

Симптомы поражения. Раздражение лимбической части миндалины вызывает выраженные эмоциональные взрывы, а ее удаление сопровождается общей атрофией эндокринных желез. При двустороннем поражении гиппокампа регистрировались расстройства памяти (в основном кратковременной), развивалась ретроградная амнезия. Двустороннее удаление аммонова рога (собственно гиппокампа) вызывает нарушение сознания, дезориентацию в пространстве и времени, утрату способности к запоминанию, кроме того, аммонов рог является основным месторасположением эпилептического очага. Двустороннее нарушение целостности свода вызывает острый амнестический синдром, характеризующийся неспособностью запоминать новые впечатления. Двустороннее поражение сосцевидных тел вызывает амнестический синдром с конфабуляциями (синдром Корсакова), долговременная память при этом остается сохранной. Амнестический синдром, возникающий вслед за преходящей церебральной аноксемией или гипоксемией, также связан с повреждением при этом сосцевидных тел и аммоновых рогов. Повреждение тех же отделов в результате дегенеративного процесса (например, при болезни Альцгеймера) приводит к прогрессивной утрате памяти. Артерии, кровоснабжающие аммонов рог и бледный шар, легко подвержены компрессии в месте их прилежания к острому краю мозжечкового намета, что приводит к повреждению или снижению функции названных образований. Двустороннее удаление поясной извилины приводит к потере инициативности, эмоциональной тупости, растормаживанию инстинктов.

Ретикулярная формация. Анатомия, функция, симптомы поражения.

Ретикулярная формация состоит приблизительно из ста ядер, которые локализуются в стволе мозга и формируют надсегментарные центры регуляции жизненно важных функций: дыхания, сердечной деятельности, сосудодвигательной, обмена веществ, глотания, рвоты и др. Нейроны дыхательного центра влияют на те сегменты спинного мозга, которые иннервируют дыхательную мускулатуру, обеспечивая ее согласованную работу. В пределах дыхательного центра можно выделить центр вдоха и центр выдоха. Их проекция соответствует средней трети продолговатого мозга. Сосудодвигательный центр продолговатого мозга проецируется на нижнюю часть ромбовидной ямки. Ретикулярная формация оказывает общее обоюдонаправленное неспецифическое воздействие на кору головного мозга, обеспечивает активность последней, влияет на восприятие, эмоции, память, внимание и обучение, играет важную роль в формировании сна и бодрствования – эта часть ретикулярной формации получила название восходящей активирующей ретикулярной системы . Взаимообразно ретикулярная формация связана с лимбической системой, а также со спинным мозгом, оказывая влияние на повышение и снижение мышечного тонуса (рис. 34).

Симптомы поражения ретикулярной формации, вследствие функциональной привязанности, как правило, выражаются в немедленном нарушении витальных функций (сердечной, дыхательной). Кратковременная ишемия ствола и шейного утолщения спинного мозга может приводить к развитию синдрома Унтерхарншейдта и синдрома дроп-атак (подробно описаны в гл. 23.2).


Сегментарный отдел вегетативной нервной системы. Анатомия, функция, симптомы поражения

Сегментарные вегетативные центры включают в себя нейроны, которые по своему положению в рефлекторной дуге являются вставочными. По топографии различают сегментарные центры головного и спинного мозга. В отличие от надсегментарного отдела здесь различают симпатические и парасимпатические центры. Симпатические центры расположены в пояснично-грудном отделе спинного мозга, парасимпатические – в среднем и продолговатом мозге, а также в крестцовом отделе спинного мозга (рис. 35 на цв. вкл.).

Среднемозговой (мезэнцефалический) сегментарный вегетативный центр представлен парасимпатическими ядрами глазодвигательного нерва: непарным срединным (Перлиа) и парным Якубовича – Вестфаля – Эдингера. От них преганглионарные волокна идут в составе глазодвигательного нерва, проникают в полость орбиты через верхнюю глазничную щель и заканчиваются на эффекторных клетках ресничного узла. Постганглионарные волокна иннервируют две мышцы глазного яблока – аккомодационную (m. ciliare ) и суживающую зрачок (m. sphincter pupillae ). Контроль за величиной зрачка осуществляется со стороны заднеталамической области, переднего двухолмия, коры больших полушарий. При развитии паралича парасимпатической иннервации мышц глаза наблюдается утрата рефлекса зрачка на свет, мидриаз, нарушение конвергенции и аккомодации.

Бульбарный сегментарный вегетативный центр представлен парасимпатическими ядрами глазодвигательного (добавочное), лицевого (верхнее слюноотделительное), языкоглоточного (нижнее слюноотделительное), блуждающего (дорсальное) нервов, обеспечивающих иннервацию слезных и слюнных желез, желез полости носа и рта, органов шеи, грудной и брюшной полостей.


Рис. 34. Ретикулярная формация:

1 – ядра гипоталамуса; 2 – зрительная пространственная ориентация, высшая вегетативная координация поглощения пищи (жевание, облизывание, сосание и др.); 3 – ядерный центр регуляции внешнего дыхания, вегетативная координация дыхания и кровообращения, акустико-вестибулярная пространственная ориентация; 4 – области вегетативной координации кровяного давления, сердечной деятельности, сосудистого тонуса, выдоха, вдоха, соматических рефлексов глотания, рвоты, тошноты (а – глотание, б – вазомоторный контроль, в – выдох, г – вдох); 5 – триггерная зона для рвоты (area postrema , самое заднее поле); 6 – сон, бодрствование, сознание; 7 – дорсальное ядро блуждающего нерва


Волокна верхнего слюноотделительного ядра (nucl. salivatorius superior ) формируют промежуточный нерв (Врисберга), который идет вместе с лицевым нервом. Часть его волокон в составе барабанной струны присоединяется к язычному нерву (из III ветви тройничного нерва) и в его составе достигает подъязычного и поднижнечелюстного узлов. Их постганглионарные волокна вступают в паренхиму одноименных слюнных желез. Другая часть волокон промежуточного нерва отделяется от лицевого нерва в виде большого каменистого нерва и, сливаясь с глубоким каменистым нервом, достигает крылонёбного узла. Постганглионарные волокна иннервируют слезную железу и железы слизистой носа и нёба. При поражении парасимпатических волокон в составе промежуточного нерва прекращается саливация и развивается сухость глаза.

Преганглионарные волокна от нижнего слюноотделительного ядра идут в составе языкоглоточного нерва, а затем в составе барабанного нерва и его конечной ветви достигают ушного узла. Постганглионарные волокна последнего являются секреторными для околоушной слюнной железы.

В обеспечении парасимпатической иннервации многих органов значительная роль принадлежит блуждающему нерву . Преганглионарные волокна от дорсального ядра блуждающего нерва выходят из полости черепа через яремное отверстие. Здесь располагаются два узла – верхний и нижний. От верхнего узла отходят веточки к твердой мозговой оболочке и ушная ветвь, от нижнего – к подъязычному, добавочному нервам и глоточная ветвь. От блуждающего нерва идут возвратный гортанный нерв и сердечные ветви. В грудной полости блуждающий нерв дает трахеальные, бронхиальные, пищеводные ветви, в брюшной – передние и задние желудочные, чревные. Преганглионарные волокна достигают парасимпатических околоорганных или внутриорганных узлов, где начинаются постганглионарные волокна.

Парасимпатическое влияние блуждающего нерва сказывается в замедлении сердечного ритма, сужении просвета бронхов, усилении перистальтики желудка и кишечника, повышении секреции желудочного сока и т. д. Двусторонний полный паралич блуждающего нерва быстро приводит к летальному исходу. Полный перерыв нерва с одной стороны вызывает развитие следующего синдрома: на стороне поражения мягкое нёбо опущено, речь имеет носовой оттенок, из-за паралича сжимающей глотку мышцы нёбная занавеска перетянута в здоровую сторону. Паралич голосовых связок приводит к хрипоте. Помимо этого наблюдается небольшая дисфагия и временно – тахикардия и аритмия.

Сегментарные вегетативные центры спинного мозга. Сегментарный симпатический центр (спинномозговой центр Якобсона) представлен ядром бокового рога спинного мозга, тянущимся от С 8 -Th 1 до L 2 -L 3 сегментов спинного мозга. Их аксоны (преганглионарные волокна, белые соединительные ветви) выходят с передними корешками и направляются к симпатическому стволу (околопозвоночным узлам). Преганглионарные волокна в узлах ствола частично прерываются, частично проходят «транзитом» к промежуточным (предпозвоночным) ганглиям. Парасимпатические центры спинного мозга сосредоточены в пределах его трех (от 2-го до 4-го включительно) крестцовых сегментов. Преганглионарные волокна выходят из спинного мозга в составе передних корешков. Затем они идут в составе передних ветвей крестцовых спинномозговых нервов и ответвляются от них в виде тазовых внутренностных нервов, которые входят в нижнее подчревное сплетение и заканчиваются во внутриорганных узлах. Постганглионарные волокна направляются к гладкой мускулатуре и железам тазовых органов, обеспечивая сокращение мочевого пузыря и дистальных отделов толстой кишки, расслабление их сфинктеров, расширение кровеносных сосудов половых органов.

При поражении боковых рогов спинного мозга наблюдаются трофические нарушения. В частности, при поражении на уровне шейного и верхнегрудного отделов трофические нарушения в руках могут быть столь выражены, что пальцы кисти оказываются деформированы.

Таким образом, при поражении сегментарных вегетативных центров в целом будут преобладать симптомы, связанные с поражением соматической нервной системы, или симптомы, сходные с поражением периферического отдела вегетативной нервной системы, что будет описано ниже.

Симпатическая иннервация всей кожной поверхности реализуется боковыми рогами C 8 -L 2 , поэтому ее сегментарная иннервация не корреспондирует с соматической сегментарной иннервацией (табл. 6).


Таблица 6

Соматическая и симпатическая сегментарная иннервация



| |