पृथ्वी का वायुमंडल सम्मिलित है। पृथ्वी के वायुमंडल की रासायनिक संरचना

कभी-कभी एक मोटी परत में हमारे ग्रह के चारों ओर के वातावरण को पाँचवाँ महासागर कहा जाता है। यह अकारण नहीं है कि विमान का दूसरा नाम विमान है। वायुमंडल विभिन्न गैसों का मिश्रण है, जिनमें नाइट्रोजन और ऑक्सीजन की प्रधानता है। यह उत्तरार्द्ध के लिए धन्यवाद है कि ग्रह पर जीवन उस रूप में संभव है जिसके हम सभी आदी हैं। इनके अतिरिक्त 1% अन्य घटक भी हैं। ये निष्क्रिय (रासायनिक अंतःक्रिया में प्रवेश नहीं करने वाली) गैसें, सल्फर ऑक्साइड हैं। पांचवें महासागर में यांत्रिक अशुद्धियाँ भी हैं: धूल, राख, आदि। वायुमंडल की सभी परतें सतह से लगभग 480 किमी तक फैली हुई हैं (डेटा अलग हैं, हम) इस बिंदु पर आगे और अधिक विस्तार से चर्चा करेंगे)। इतनी प्रभावशाली मोटाई एक प्रकार की अभेद्य ढाल बनाती है जो ग्रह को हानिकारक ब्रह्मांडीय विकिरण और बड़ी वस्तुओं से बचाती है।

वायुमंडल की निम्नलिखित परतें प्रतिष्ठित हैं: क्षोभमंडल, उसके बाद समतापमंडल, फिर मध्यमंडल और अंत में, थर्मोस्फीयर। दिया गया क्रम ग्रह की सतह से शुरू होता है। वायुमंडल की सघन परतों का प्रतिनिधित्व प्रथम दो द्वारा किया जाता है। वे ही हैं जो हानिकारक के एक महत्वपूर्ण हिस्से को फ़िल्टर करते हैं

वायुमंडल की सबसे निचली परत, क्षोभमंडल, समुद्र तल से केवल 12 किमी ऊपर (उष्णकटिबंधीय में 18 किमी) तक फैली हुई है। 90% तक जलवाष्प यहीं केंद्रित है, यही कारण है कि बादल यहीं बनते हैं। अधिकांश वायु भी यहीं केंद्रित है। वायुमंडल की सभी बाद की परतें ठंडी हैं, क्योंकि सतह से निकटता परावर्तित सौर किरणों को हवा को गर्म करने की अनुमति देती है।

समताप मंडल सतह से लगभग 50 किमी तक फैला हुआ है। अधिकांश मौसम संबंधी गुब्बारे इसी परत में "तैरते" हैं। यहां कुछ प्रकार के विमान भी उड़ान भर सकते हैं। आश्चर्यजनक विशेषताओं में से एक तापमान शासन है: 25 से 40 किमी की सीमा में, हवा का तापमान बढ़ना शुरू हो जाता है। -60 से यह बढ़कर लगभग 1 हो जाता है। फिर इसमें थोड़ी कमी होकर शून्य हो जाती है, जो 55 किमी की ऊंचाई तक बनी रहती है। ऊपरी सीमा बदनाम है

इसके अलावा, मध्यमंडल लगभग 90 किमी तक फैला हुआ है। यहां हवा का तापमान तेजी से गिरता है। प्रत्येक 100 मीटर की वृद्धि पर 0.3 डिग्री की कमी होती है। इसे कभी-कभी वातावरण का सबसे ठंडा भाग भी कहा जाता है। हवा का घनत्व कम है, लेकिन गिरते उल्कापिंडों के प्रति प्रतिरोध पैदा करने के लिए यह काफी है।

सामान्य अर्थ में वायुमंडल की परतें लगभग 118 किमी की ऊंचाई पर समाप्त होती हैं। प्रसिद्ध अरोरा यहीं बनते हैं। थर्मोस्फीयर क्षेत्र ऊपर से शुरू होता है। एक्स-रे के कारण इस क्षेत्र में मौजूद कुछ वायु अणुओं का आयनीकरण होता है। ये प्रक्रियाएँ तथाकथित आयनमंडल का निर्माण करती हैं (इसे अक्सर थर्मोस्फीयर में शामिल किया जाता है और इसलिए इसे अलग से नहीं माना जाता है)।

700 किमी से ऊपर की हर चीज़ को बाह्यमंडल कहा जाता है। हवा बेहद छोटी होती है, इसलिए वे टकराव के कारण प्रतिरोध का अनुभव किए बिना स्वतंत्र रूप से चलते हैं। यह उनमें से प्रत्येक को 160 डिग्री सेल्सियस के अनुरूप ऊर्जा जमा करने की अनुमति देता है, भले ही आसपास का तापमान कम हो। गैस के अणु बाह्यमंडल के पूरे आयतन में उनके द्रव्यमान के अनुसार वितरित होते हैं, इसलिए उनमें से सबसे भारी परत के निचले हिस्से में ही पाया जा सकता है। ग्रह का गुरुत्वाकर्षण, जो ऊंचाई के साथ घटता जाता है, अब अणुओं को धारण करने में सक्षम नहीं है, इसलिए उच्च ऊर्जा वाले ब्रह्मांडीय कण और विकिरण गैस अणुओं को वायुमंडल छोड़ने के लिए पर्याप्त आवेग प्रदान करते हैं। यह क्षेत्र सबसे लंबे क्षेत्रों में से एक है: ऐसा माना जाता है कि 2000 किमी से अधिक ऊंचाई पर वायुमंडल पूरी तरह से अंतरिक्ष के निर्वात में बदल जाता है (कभी-कभी संख्या 10,000 भी दिखाई देती है)। कृत्रिम प्राणी थर्मोस्फीयर में रहते हुए भी कक्षाओं में घूमते हैं।

संकेतित सभी संख्याएँ सांकेतिक हैं, क्योंकि वायुमंडलीय परतों की सीमाएँ कई कारकों पर निर्भर करती हैं, उदाहरण के लिए, सूर्य की गतिविधि पर।

वायुमंडलीय वायु में नाइट्रोजन (77.99%), ऑक्सीजन (21%), अक्रिय गैसें (1%) और कार्बन डाइऑक्साइड (0.01%) होते हैं। समय के साथ कार्बन डाइऑक्साइड की हिस्सेदारी इस तथ्य के कारण बढ़ जाती है कि ईंधन दहन उत्पाद वायुमंडल में छोड़े जाते हैं, और, इसके अलावा, कार्बन डाइऑक्साइड को अवशोषित करने और ऑक्सीजन छोड़ने वाले जंगलों का क्षेत्र घट जाता है।

वायुमंडल में थोड़ी मात्रा में ओजोन भी है, जो लगभग 25-30 किमी की ऊंचाई पर केंद्रित है और तथाकथित ओजोन परत का निर्माण करती है। यह परत सौर पराबैंगनी विकिरण में बाधा उत्पन्न करती है, जो पृथ्वी पर जीवित जीवों के लिए खतरनाक है।

इसके अलावा, वायुमंडल में जलवाष्प और विभिन्न अशुद्धियाँ होती हैं - धूल के कण, ज्वालामुखीय राख, कालिख, आदि। अशुद्धियों की सघनता पृथ्वी की सतह के पास और कुछ क्षेत्रों में अधिक है: बड़े शहरों, रेगिस्तानों के ऊपर।

क्षोभ मंडल- निचला, इसमें अधिकांश हवा होती है और। इस परत की ऊंचाई अलग-अलग होती है: उष्णकटिबंधीय के पास 8-10 किमी से लेकर भूमध्य रेखा के पास 16-18 किमी तक। क्षोभमंडल में यह वृद्धि के साथ घटता है: प्रत्येक किलोमीटर के लिए 6°C। क्षोभमंडल में मौसम का निर्माण होता है, हवाएं, वर्षा, बादल, चक्रवात और प्रतिचक्रवात बनते हैं।

वायुमंडल की अगली परत है समताप मंडल. इसमें हवा बहुत अधिक विरल है और इसमें जलवाष्प बहुत कम है। समताप मंडल के निचले हिस्से में तापमान -60 - -80°C होता है और बढ़ती ऊंचाई के साथ गिरता जाता है। यह समताप मंडल में है कि ओजोन परत स्थित है। समताप मंडल की विशेषता तेज़ हवा की गति (80-100 मीटर/सेकंड तक) है।

मीसोस्फीयर- वायुमंडल की मध्य परत, 50 से S0-S5 किमी की ऊंचाई पर समताप मंडल के ऊपर स्थित है। मेसोस्फीयर की विशेषता निचली सीमा पर 0°C से ऊपरी सीमा पर -90°C तक की ऊंचाई के साथ औसत तापमान में कमी है। मेसोस्फीयर की ऊपरी सीमा के पास, रात्रिकालीन बादल देखे जाते हैं, जो रात में सूर्य द्वारा प्रकाशित होते हैं। मेसोस्फीयर की ऊपरी सीमा पर हवा का दबाव पृथ्वी की सतह की तुलना में 200 गुना कम है।

थर्मोस्फीयर- मेसोस्फीयर के ऊपर, SO से 400-500 किमी की ऊंचाई पर स्थित, इसमें तापमान पहले धीरे-धीरे और फिर तेजी से बढ़ने लगता है। इसका कारण 150-300 किमी की ऊंचाई पर सूर्य से पराबैंगनी विकिरण का अवशोषण है। थर्मोस्फीयर में, तापमान लगातार लगभग 400 किमी की ऊंचाई तक बढ़ता है, जहां यह 700 - 1500 डिग्री सेल्सियस (सौर गतिविधि के आधार पर) तक पहुंच जाता है। पराबैंगनी, एक्स-रे और ब्रह्मांडीय विकिरण के प्रभाव में, वायु का आयनीकरण ("ऑरोरा") भी होता है। आयनमंडल के मुख्य क्षेत्र थर्मोस्फीयर के भीतर स्थित हैं।

बहिर्मंडल- वायुमंडल की बाहरी, सबसे दुर्लभ परत, यह 450-000 किमी की ऊंचाई पर शुरू होती है, और इसकी ऊपरी सीमा पृथ्वी की सतह से कई हजार किमी की दूरी पर स्थित है, जहां कणों की एकाग्रता इंटरप्लेनेटरी के समान हो जाती है अंतरिक्ष। बाह्यमंडल में आयनित गैस (प्लाज्मा) होती है; बाह्यमंडल के निचले और मध्य भाग में मुख्य रूप से ऑक्सीजन और नाइट्रोजन होते हैं; बढ़ती ऊंचाई के साथ, प्रकाश गैसों, विशेष रूप से आयनित हाइड्रोजन की सापेक्ष सांद्रता तेजी से बढ़ती है। बाह्यमंडल में तापमान 1300-3000°C है; यह ऊंचाई के साथ कमजोर रूप से बढ़ता है। पृथ्वी की विकिरण पेटियाँ मुख्यतः बाह्यमंडल में स्थित हैं।

समुद्र तल पर 1013.25 hPa (लगभग 760 mmHg)। पृथ्वी की सतह पर वैश्विक औसत हवा का तापमान 15 डिग्री सेल्सियस है, उपोष्णकटिबंधीय रेगिस्तान में तापमान लगभग 57 डिग्री सेल्सियस से लेकर अंटार्कटिका में -89 डिग्री सेल्सियस तक भिन्न होता है। वायु घनत्व और दबाव घातांक के करीब एक नियम के अनुसार ऊंचाई के साथ घटते हैं।

वायुमंडल की संरचना. ऊर्ध्वाधर रूप से, वायुमंडल में एक स्तरित संरचना होती है, जो मुख्य रूप से ऊर्ध्वाधर तापमान वितरण (आंकड़ा) की विशेषताओं से निर्धारित होती है, जो भौगोलिक स्थिति, मौसम, दिन के समय आदि पर निर्भर करती है। वायुमंडल की निचली परत - क्षोभमंडल - की विशेषता ऊंचाई के साथ तापमान में गिरावट (लगभग 6 डिग्री सेल्सियस प्रति 1 किमी) है, इसकी ऊंचाई ध्रुवीय अक्षांशों में 8-10 किमी से लेकर उष्णकटिबंधीय में 16-18 किमी तक है। ऊंचाई के साथ वायु घनत्व में तेजी से कमी के कारण, वायुमंडल के कुल द्रव्यमान का लगभग 80% क्षोभमंडल में स्थित है। क्षोभमंडल के ऊपर समताप मंडल है, एक परत जो आम तौर पर ऊंचाई के साथ तापमान में वृद्धि की विशेषता है। क्षोभमंडल और समतापमंडल के बीच की संक्रमण परत को ट्रोपोपॉज़ कहा जाता है। निचले समताप मंडल में, लगभग 20 किमी के स्तर तक, तापमान ऊंचाई (तथाकथित इज़ोटेर्मल क्षेत्र) के साथ थोड़ा बदलता है और अक्सर थोड़ा कम भी हो जाता है। इससे ऊपर, ओजोन द्वारा सूर्य से पराबैंगनी विकिरण के अवशोषण के कारण तापमान बढ़ता है, पहले धीरे-धीरे और 34-36 किमी के स्तर से तेजी से बढ़ता है। समताप मंडल की ऊपरी सीमा - स्ट्रैटोपॉज़ - अधिकतम तापमान (260-270 K) के अनुरूप 50-55 किमी की ऊंचाई पर स्थित है। 55-85 किमी की ऊँचाई पर स्थित वायुमंडल की परत, जहाँ तापमान फिर से ऊँचाई के साथ गिरता है, मेसोस्फीयर कहलाती है, इसकी ऊपरी सीमा पर - मेसोपॉज़ - गर्मियों में तापमान 150-160 K और 200-230 तक पहुँच जाता है; सर्दियों में के। मेसोपॉज़ के ऊपर, थर्मोस्फीयर शुरू होता है - तापमान में तेजी से वृद्धि की विशेषता वाली एक परत, 250 किमी की ऊंचाई पर 800-1200 K तक पहुंचती है, थर्मोस्फीयर में, सूर्य से कोरपसकुलर और एक्स-रे विकिरण अवशोषित होता है। उल्काओं की गति धीमी हो जाती है और वे जल जाती हैं, इसलिए यह पृथ्वी की सुरक्षात्मक परत के रूप में कार्य करती है। इससे भी ऊंचा बाह्यमंडल है, जहां से वायुमंडलीय गैसें अपव्यय के कारण बाहरी अंतरिक्ष में फैल जाती हैं और जहां वायुमंडल से अंतरग्रहीय अंतरिक्ष में क्रमिक संक्रमण होता है।

वायुमंडलीय रचना. लगभग 100 किमी की ऊँचाई तक, वायुमंडल रासायनिक संरचना में लगभग सजातीय है और हवा का औसत आणविक भार (लगभग 29) स्थिर है। पृथ्वी की सतह के पास, वायुमंडल में नाइट्रोजन (आयतन के हिसाब से लगभग 78.1%) और ऑक्सीजन (लगभग 20.9%) शामिल है, और इसमें थोड़ी मात्रा में आर्गन, कार्बन डाइऑक्साइड (कार्बन डाइऑक्साइड), नियॉन और अन्य स्थायी और परिवर्तनशील घटक भी हैं (वायु देखें) ).

इसके अलावा, वायुमंडल में थोड़ी मात्रा में ओजोन, नाइट्रोजन ऑक्साइड, अमोनिया, रेडॉन आदि होते हैं। हवा के मुख्य घटकों की सापेक्ष सामग्री समय के साथ स्थिर होती है और विभिन्न भौगोलिक क्षेत्रों में एक समान होती है। जलवाष्प और ओजोन की सामग्री स्थान और समय में परिवर्तनशील है; उनकी कम सामग्री के बावजूद, वायुमंडलीय प्रक्रियाओं में उनकी भूमिका बहुत महत्वपूर्ण है।

100-110 किमी से ऊपर, ऑक्सीजन, कार्बन डाइऑक्साइड और जल वाष्प के अणुओं का पृथक्करण होता है, इसलिए हवा का आणविक द्रव्यमान कम हो जाता है। लगभग 1000 किमी की ऊंचाई पर, हल्की गैसें - हीलियम और हाइड्रोजन - प्रबल होने लगती हैं, और इससे भी अधिक ऊंचाई पर पृथ्वी का वायुमंडल धीरे-धीरे अंतरग्रहीय गैस में बदल जाता है।

वायुमंडल का सबसे महत्वपूर्ण परिवर्तनशील घटक जलवाष्प है, जो पानी और नम मिट्टी की सतह से वाष्पीकरण के साथ-साथ पौधों द्वारा वाष्पोत्सर्जन के माध्यम से वायुमंडल में प्रवेश करता है। जलवाष्प की सापेक्ष सामग्री पृथ्वी की सतह पर उष्णकटिबंधीय में 2.6% से लेकर ध्रुवीय अक्षांशों में 0.2% तक भिन्न होती है। यह ऊंचाई के साथ तेजी से गिरता है, 1.5-2 किमी की ऊंचाई पर पहले से ही आधे से कम हो जाता है। समशीतोष्ण अक्षांशों पर वायुमंडल के ऊर्ध्वाधर स्तंभ में लगभग 1.7 सेमी "अवक्षेपित पानी की परत" होती है। जब जल वाष्प संघनित होता है, तो बादल बनते हैं, जिससे वायुमंडलीय वर्षा वर्षा, ओले और बर्फ के रूप में गिरती है।

वायुमंडलीय वायु का एक महत्वपूर्ण घटक ओजोन है, जिसका 90% समताप मंडल (10 से 50 किमी के बीच) में केंद्रित है, इसका लगभग 10% क्षोभमंडल में है। ओजोन कठोर यूवी विकिरण (290 एनएम से कम तरंग दैर्ध्य के साथ) का अवशोषण प्रदान करता है, और यह जीवमंडल के लिए इसकी सुरक्षात्मक भूमिका है। कुल ओजोन सामग्री का मान अक्षांश और मौसम के आधार पर 0.22 से 0.45 सेमी (दबाव पी = 1 एटीएम और तापमान टी = 0 डिग्री सेल्सियस पर ओजोन परत की मोटाई) के बीच भिन्न होता है। 1980 के दशक की शुरुआत से अंटार्कटिका में वसंत ऋतु में देखे गए ओजोन छिद्रों में, ओजोन सामग्री 0.07 सेमी तक गिर सकती है, यह भूमध्य रेखा से ध्रुवों तक बढ़ जाती है और वसंत में अधिकतम और शरद ऋतु में न्यूनतम के साथ एक वार्षिक चक्र होता है, और इसका आयाम होता है। वार्षिक चक्र उष्ण कटिबंध में छोटा होता है और उच्च अक्षांशों की ओर बढ़ता है। वायुमंडल का एक महत्वपूर्ण परिवर्तनशील घटक कार्बन डाइऑक्साइड है, जिसकी वायुमंडल में सामग्री पिछले 200 वर्षों में 35% बढ़ गई है, जिसे मुख्य रूप से मानवजनित कारक द्वारा समझाया गया है। इसकी अक्षांशीय और मौसमी परिवर्तनशीलता देखी जाती है, जो पौधों के प्रकाश संश्लेषण और समुद्री जल में घुलनशीलता से जुड़ी होती है (हेनरी के नियम के अनुसार, बढ़ते तापमान के साथ पानी में गैस की घुलनशीलता कम हो जाती है)।

ग्रह की जलवायु को आकार देने में एक महत्वपूर्ण भूमिका वायुमंडलीय एरोसोल द्वारा निभाई जाती है - हवा में निलंबित ठोस और तरल कण जिनका आकार कई एनएम से लेकर दसियों माइक्रोन तक होता है। प्राकृतिक और मानवजनित मूल के एरोसोल हैं। एरोसोल का निर्माण पौधों के जीवन और मानव आर्थिक गतिविधि, ज्वालामुखी विस्फोटों के उत्पादों से गैस-चरण प्रतिक्रियाओं की प्रक्रिया में होता है, जो ग्रह की सतह से, विशेष रूप से इसके रेगिस्तानी क्षेत्रों से हवा द्वारा उठने वाली धूल के परिणामस्वरूप होता है, और यह भी होता है वायुमंडल की ऊपरी परतों में गिरने वाली ब्रह्मांडीय धूल से निर्मित। अधिकांश एरोसोल क्षोभमंडल में केंद्रित होता है; ज्वालामुखी विस्फोटों से निकलने वाला एरोसोल लगभग 20 किमी की ऊंचाई पर तथाकथित जंग परत बनाता है। मानवजनित एरोसोल की सबसे बड़ी मात्रा वाहनों और थर्मल पावर प्लांटों के संचालन, रासायनिक उत्पादन, ईंधन दहन आदि के परिणामस्वरूप वायुमंडल में प्रवेश करती है। इसलिए, कुछ क्षेत्रों में वायुमंडल की संरचना सामान्य हवा से काफी भिन्न होती है, जिसके लिए इसकी आवश्यकता होती है। वायुमंडलीय वायु प्रदूषण के स्तर की निगरानी और निगरानी के लिए एक विशेष सेवा का निर्माण।

वातावरण का विकास. आधुनिक वायुमंडल स्पष्ट रूप से द्वितीयक उत्पत्ति का है: इसका निर्माण लगभग 4.5 अरब वर्ष पहले ग्रह के निर्माण के पूरा होने के बाद पृथ्वी के ठोस आवरण द्वारा छोड़ी गई गैसों से हुआ था। पृथ्वी के भूवैज्ञानिक इतिहास के दौरान, कई कारकों के प्रभाव में वायुमंडल की संरचना में महत्वपूर्ण परिवर्तन हुए हैं: गैसों का अपव्यय (अस्थिरीकरण), मुख्य रूप से हल्की गैसें, बाहरी अंतरिक्ष में; ज्वालामुखी गतिविधि के परिणामस्वरूप स्थलमंडल से गैसों का निकलना; वायुमंडल के घटकों और पृथ्वी की पपड़ी बनाने वाली चट्टानों के बीच रासायनिक प्रतिक्रियाएँ; सौर यूवी विकिरण के प्रभाव में वायुमंडल में ही फोटोकैमिकल प्रतिक्रियाएं; अंतरग्रहीय माध्यम से पदार्थ का अभिवृद्धि (कब्जा करना) (उदाहरण के लिए, उल्कापिंड पदार्थ)। वायुमंडल के विकास का भूवैज्ञानिक और भू-रासायनिक प्रक्रियाओं से और पिछले 3-4 अरब वर्षों में जीवमंडल की गतिविधि से भी गहरा संबंध है। आधुनिक वायुमंडल (नाइट्रोजन, कार्बन डाइऑक्साइड, जल वाष्प) बनाने वाली गैसों का एक महत्वपूर्ण हिस्सा ज्वालामुखीय गतिविधि और घुसपैठ के दौरान उत्पन्न हुआ, जो उन्हें पृथ्वी की गहराई से ले गया। लगभग 2 अरब वर्ष पहले प्रकाश संश्लेषक जीवों के परिणामस्वरूप ऑक्सीजन प्रशंसनीय मात्रा में प्रकट हुई, जो मूल रूप से समुद्र के सतही जल में उत्पन्न हुए थे।

कार्बोनेट जमा की रासायनिक संरचना के आंकड़ों के आधार पर, भूवैज्ञानिक अतीत के वातावरण में कार्बन डाइऑक्साइड और ऑक्सीजन की मात्रा का अनुमान प्राप्त किया गया था। फ़ैनरोज़ोइक (पृथ्वी के इतिहास के पिछले 570 मिलियन वर्ष) के दौरान, वायुमंडल में कार्बन डाइऑक्साइड की मात्रा ज्वालामुखीय गतिविधि के स्तर, समुद्र के तापमान और प्रकाश संश्लेषण की दर के आधार पर व्यापक रूप से भिन्न थी। इस समय के अधिकांश समय में, वायुमंडल में कार्बन डाइऑक्साइड की सांद्रता आज की तुलना में काफी अधिक (10 गुना तक) थी। फ़ैनरोज़ोइक वातावरण में ऑक्सीजन की मात्रा में काफी बदलाव आया, जिसमें इसकी वृद्धि की प्रमुख प्रवृत्ति थी। प्रीकैम्ब्रियन वायुमंडल में, कार्बन डाइऑक्साइड का द्रव्यमान, एक नियम के रूप में, अधिक था, और ऑक्सीजन का द्रव्यमान फ़ैनरोज़ोइक वातावरण की तुलना में छोटा था। कार्बन डाइऑक्साइड की मात्रा में उतार-चढ़ाव का अतीत में जलवायु पर महत्वपूर्ण प्रभाव पड़ा, जिससे कार्बन डाइऑक्साइड की बढ़ती सांद्रता के साथ ग्रीनहाउस प्रभाव बढ़ गया, जिसके कारण फ़ैनरोज़ोइक के मुख्य भाग में जलवायु आधुनिक युग की तुलना में अधिक गर्म थी।

वातावरण और जीवन. वायुमंडल के बिना, पृथ्वी एक मृत ग्रह होगी। जैविक जीवन वायुमंडल और संबंधित जलवायु और मौसम के साथ निकट संपर्क में होता है। संपूर्ण ग्रह की तुलना में द्रव्यमान में नगण्य (लगभग दस लाख में एक भाग), वायुमंडल सभी प्रकार के जीवन के लिए एक अनिवार्य शर्त है। जीवों के जीवन के लिए वायुमंडलीय गैसों में सबसे महत्वपूर्ण हैं ऑक्सीजन, नाइट्रोजन, जल वाष्प, कार्बन डाइऑक्साइड और ओजोन। जब कार्बन डाइऑक्साइड को प्रकाश संश्लेषक पौधों द्वारा अवशोषित किया जाता है, तो कार्बनिक पदार्थ बनता है, जिसका उपयोग मनुष्यों सहित अधिकांश जीवित प्राणियों द्वारा ऊर्जा के स्रोत के रूप में किया जाता है। एरोबिक जीवों के अस्तित्व के लिए ऑक्सीजन आवश्यक है, जिसके लिए ऊर्जा का प्रवाह कार्बनिक पदार्थों की ऑक्सीकरण प्रतिक्रियाओं द्वारा प्रदान किया जाता है। कुछ सूक्ष्मजीवों (नाइट्रोजन फिक्सर) द्वारा आत्मसात किया गया नाइट्रोजन, पौधों के खनिज पोषण के लिए आवश्यक है। ओजोन, जो सूर्य से कठोर यूवी विकिरण को अवशोषित करता है, जीवन के लिए हानिकारक सौर विकिरण के इस हिस्से को काफी कमजोर कर देता है। वायुमंडल में जलवाष्प का संघनन, बादलों का निर्माण और उसके बाद होने वाली वर्षा भूमि पर पानी की आपूर्ति करती है, जिसके बिना कोई भी जीवन संभव नहीं है। जलमंडल में जीवों की महत्वपूर्ण गतिविधि काफी हद तक पानी में घुली वायुमंडलीय गैसों की मात्रा और रासायनिक संरचना से निर्धारित होती है। चूँकि वायुमंडल की रासायनिक संरचना महत्वपूर्ण रूप से जीवों की गतिविधियों पर निर्भर करती है, जीवमंडल और वायुमंडल को एक ही प्रणाली का हिस्सा माना जा सकता है, जिसका रखरखाव और विकास (जैव भू-रासायनिक चक्र देखें) की संरचना को बदलने के लिए बहुत महत्वपूर्ण था। एक ग्रह के रूप में पृथ्वी के पूरे इतिहास में वायुमंडल।

वायुमंडल का विकिरण, ताप और जल संतुलन. सौर विकिरण व्यावहारिक रूप से वायुमंडल में सभी भौतिक प्रक्रियाओं के लिए ऊर्जा का एकमात्र स्रोत है। वायुमंडल के विकिरण शासन की मुख्य विशेषता तथाकथित ग्रीनहाउस प्रभाव है: वायुमंडल सौर विकिरण को पृथ्वी की सतह पर काफी अच्छी तरह से प्रसारित करता है, लेकिन सक्रिय रूप से पृथ्वी की सतह से थर्मल लंबी-तरंग विकिरण को अवशोषित करता है, जिसका एक हिस्सा सतह पर वापस आ जाता है। काउंटर विकिरण के रूप में, पृथ्वी की सतह से विकिरण संबंधी गर्मी के नुकसान की भरपाई (वायुमंडलीय विकिरण देखें)। वायुमंडल की अनुपस्थिति में, पृथ्वी की सतह का औसत तापमान -18°C होगा, लेकिन वास्तव में यह 15°C है। आने वाला सौर विकिरण आंशिक रूप से (लगभग 20%) वायुमंडल में अवशोषित होता है (मुख्य रूप से जल वाष्प, पानी की बूंदों, कार्बन डाइऑक्साइड, ओजोन और एरोसोल द्वारा), और एयरोसोल कणों और घनत्व में उतार-चढ़ाव (रेले स्कैटरिंग) द्वारा भी बिखरा हुआ है (लगभग 7%) . पृथ्वी की सतह तक पहुँचने वाला कुल विकिरण आंशिक रूप से (लगभग 23%) इससे परावर्तित होता है। परावर्तन गुणांक अंतर्निहित सतह की परावर्तनशीलता, तथाकथित अल्बेडो द्वारा निर्धारित किया जाता है। औसतन, सौर विकिरण के अभिन्न प्रवाह के लिए पृथ्वी का अल्बेडो 30% के करीब है। ताजी गिरी बर्फ के लिए यह कुछ प्रतिशत (सूखी मिट्टी और काली मिट्टी) से लेकर 70-90% तक भिन्न होता है। पृथ्वी की सतह और वायुमंडल के बीच विकिरणीय ताप विनिमय महत्वपूर्ण रूप से अल्बेडो पर निर्भर करता है और यह पृथ्वी की सतह के प्रभावी विकिरण और इसके द्वारा अवशोषित वायुमंडल के प्रति-विकिरण द्वारा निर्धारित होता है। बाहरी अंतरिक्ष से पृथ्वी के वायुमंडल में प्रवेश करने और इसे वापस छोड़ने वाले विकिरण प्रवाह के बीजगणितीय योग को विकिरण संतुलन कहा जाता है।

वायुमंडल और पृथ्वी की सतह द्वारा अवशोषण के बाद सौर विकिरण का परिवर्तन एक ग्रह के रूप में पृथ्वी के ताप संतुलन को निर्धारित करता है। वायुमंडल के लिए ऊष्मा का मुख्य स्रोत पृथ्वी की सतह है; इससे गर्मी न केवल लंबी-तरंग विकिरण के रूप में स्थानांतरित होती है, बल्कि संवहन द्वारा भी होती है, और जल वाष्प के संघनन के दौरान भी निकलती है। इन ऊष्मा प्रवाहों का हिस्सा क्रमशः औसतन 20%, 7% और 23% है। प्रत्यक्ष सौर विकिरण के अवशोषण के कारण लगभग 20% ऊष्मा भी यहाँ जुड़ जाती है। सूर्य की किरणों के लंबवत और वायुमंडल के बाहर पृथ्वी से सूर्य की औसत दूरी पर स्थित एकल क्षेत्र (तथाकथित सौर स्थिरांक) के माध्यम से प्रति इकाई समय में सौर विकिरण का प्रवाह 1367 W/m2 के बराबर है, परिवर्तन हैं सौर गतिविधि के चक्र के आधार पर 1-2 W/m2। लगभग 30% की ग्रहीय अल्बेडो के साथ, ग्रह पर सौर ऊर्जा का समय-औसत वैश्विक प्रवाह 239 W/m2 है। चूंकि एक ग्रह के रूप में पृथ्वी अंतरिक्ष में औसतन समान मात्रा में ऊर्जा उत्सर्जित करती है, तो स्टीफन-बोल्ट्ज़मैन कानून के अनुसार, आउटगोइंग थर्मल लॉन्ग-वेव विकिरण का प्रभावी तापमान 255 K (-18 ° C) है। वहीं, पृथ्वी की सतह का औसत तापमान 15°C होता है. 33°C का अंतर ग्रीनहाउस प्रभाव के कारण है।

वायुमंडल का जल संतुलन आम तौर पर पृथ्वी की सतह से वाष्पित होने वाली नमी की मात्रा और पृथ्वी की सतह पर गिरने वाली वर्षा की मात्रा की समानता से मेल खाता है। महासागरों के ऊपर का वातावरण भूमि की तुलना में वाष्पीकरण प्रक्रियाओं से अधिक नमी प्राप्त करता है, और वर्षा के रूप में 90% नमी खो देता है। महासागरों के ऊपर से अतिरिक्त जलवाष्प को वायु धाराओं द्वारा महाद्वीपों तक पहुँचाया जाता है। महासागरों से महाद्वीपों तक वायुमंडल में स्थानांतरित जलवाष्प की मात्रा महासागरों में बहने वाली नदियों की मात्रा के बराबर होती है।

वायु संचलन. पृथ्वी गोलाकार है, इसलिए उष्णकटिबंधीय की तुलना में इसके उच्च अक्षांशों तक बहुत कम सौर विकिरण पहुँचता है। परिणामस्वरूप, अक्षांशों के बीच बड़े तापमान विरोधाभास उत्पन्न होते हैं। तापमान वितरण महासागरों और महाद्वीपों की सापेक्ष स्थिति से भी महत्वपूर्ण रूप से प्रभावित होता है। समुद्र के पानी के विशाल द्रव्यमान और पानी की उच्च ताप क्षमता के कारण, समुद्र की सतह के तापमान में मौसमी उतार-चढ़ाव भूमि की तुलना में बहुत कम होता है। इस संबंध में, मध्य और उच्च अक्षांशों में, गर्मियों में महासागरों के ऊपर हवा का तापमान महाद्वीपों की तुलना में काफी कम और सर्दियों में अधिक होता है।

विश्व के विभिन्न क्षेत्रों में वायुमंडल के असमान तापन के कारण वायुमंडलीय दबाव का स्थानिक रूप से अमानवीय वितरण होता है। समुद्र तल पर, दबाव वितरण की विशेषता भूमध्य रेखा के पास अपेक्षाकृत कम मान, उपोष्णकटिबंधीय (उच्च दबाव बेल्ट) में वृद्धि और मध्य और उच्च अक्षांशों में घट जाती है। इसी समय, अतिरिक्त उष्णकटिबंधीय अक्षांशों के महाद्वीपों पर, दबाव आमतौर पर सर्दियों में बढ़ जाता है और गर्मियों में कम हो जाता है, जो तापमान वितरण से जुड़ा होता है। दबाव प्रवणता के प्रभाव के तहत, हवा उच्च दबाव वाले क्षेत्रों से कम दबाव वाले क्षेत्रों की ओर निर्देशित त्वरण का अनुभव करती है, जिससे वायु द्रव्यमान की गति होती है। गतिमान वायु द्रव्यमान पृथ्वी के घूर्णन के विक्षेपक बल (कोरिओलिस बल), घर्षण बल, जो ऊंचाई के साथ घटता है, और, घुमावदार प्रक्षेपवक्र के लिए, केन्द्रापसारक बल से भी प्रभावित होता है। हवा का अशांत मिश्रण बहुत महत्वपूर्ण है (वायुमंडल में अशांति देखें)।

वायु धाराओं (सामान्य वायुमंडलीय परिसंचरण) की एक जटिल प्रणाली ग्रहों के दबाव वितरण से जुड़ी हुई है। मेरिडियनल तल में, औसतन दो या तीन मेरिडियनल परिसंचरण कोशिकाओं का पता लगाया जा सकता है। भूमध्य रेखा के पास, गर्म हवा उपोष्णकटिबंधीय में उठती और गिरती है, जिससे हेडली सेल बनता है। रिवर्स फेरेल सेल की हवा भी वहीं उतरती है। उच्च अक्षांशों पर, एक सीधी ध्रुवीय कोशिका अक्सर दिखाई देती है। मेरिडियनल परिसंचरण वेग 1 मीटर/सेकेंड या उससे कम के क्रम पर हैं। कोरिओलिस बल के कारण, अधिकांश वायुमंडल में पश्चिमी हवाएँ देखी जाती हैं जिनकी गति मध्य क्षोभमंडल में लगभग 15 मीटर/सेकेंड होती है। यहाँ अपेक्षाकृत स्थिर पवन प्रणालियाँ हैं। इनमें व्यापारिक हवाएँ शामिल हैं - उपोष्णकटिबंधीय में उच्च दबाव बेल्ट से भूमध्य रेखा तक ध्यान देने योग्य पूर्वी घटक (पूर्व से पश्चिम तक) के साथ चलने वाली हवाएँ। मानसून काफी स्थिर होते हैं - वायु धाराएँ जिनमें स्पष्ट रूप से परिभाषित मौसमी चरित्र होता है: वे गर्मियों में समुद्र से मुख्य भूमि की ओर और सर्दियों में विपरीत दिशा में चलती हैं। हिंद महासागर के मानसून विशेष रूप से नियमित होते हैं। मध्य अक्षांशों में वायुराशियों की गति मुख्यतः पश्चिमी (पश्चिम से पूर्व की ओर) होती है। यह वायुमंडलीय मोर्चों का एक क्षेत्र है जिस पर बड़े-बड़े भंवर उठते हैं - चक्रवात और प्रतिचक्रवात, जो कई सैकड़ों और यहां तक ​​कि हजारों किलोमीटर की दूरी तय करते हैं। उष्णकटिबंधीय क्षेत्रों में भी चक्रवात आते हैं; यहां वे अपने छोटे आकार, लेकिन बहुत तेज़ हवा की गति, तूफान बल (33 मीटर/सेकेंड या अधिक), तथाकथित उष्णकटिबंधीय चक्रवातों तक पहुंचने से पहचाने जाते हैं। अटलांटिक और पूर्वी प्रशांत महासागरों में उन्हें तूफान कहा जाता है, और पश्चिमी प्रशांत महासागर में उन्हें टाइफून कहा जाता है। ऊपरी क्षोभमंडल और निचले समतापमंडल में, प्रत्यक्ष हैडली मेरिडियनल सर्कुलेशन सेल और रिवर्स फेरेल सेल को अलग करने वाले क्षेत्रों में, अपेक्षाकृत संकीर्ण, सैकड़ों किलोमीटर चौड़ी, तेजी से परिभाषित सीमाओं के साथ जेट धाराएं अक्सर देखी जाती हैं, जिसके भीतर हवा 100-150 तक पहुंच जाती है। और यहां तक ​​कि 200 मीटर/ के साथ.

जलवायु एवं मौसम. पृथ्वी की सतह पर विभिन्न अक्षांशों से आने वाले सौर विकिरण की मात्रा में अंतर, जो इसके भौतिक गुणों में भिन्न है, पृथ्वी की जलवायु की विविधता को निर्धारित करता है। भूमध्य रेखा से लेकर उष्णकटिबंधीय अक्षांशों तक, पृथ्वी की सतह पर हवा का तापमान औसतन 25-30 डिग्री सेल्सियस होता है और पूरे वर्ष इसमें थोड़ा बदलाव होता है। भूमध्यरेखीय बेल्ट में आमतौर पर बहुत अधिक वर्षा होती है, जिससे वहां अत्यधिक नमी की स्थिति पैदा हो जाती है। उष्णकटिबंधीय क्षेत्रों में वर्षा कम हो जाती है और कुछ क्षेत्रों में बहुत कम हो जाती है। यहाँ पृथ्वी के विशाल रेगिस्तान हैं।

उपोष्णकटिबंधीय और मध्य अक्षांशों में, हवा का तापमान पूरे वर्ष काफी भिन्न होता है, और महासागरों से दूर महाद्वीपों के क्षेत्रों में गर्मियों और सर्दियों के तापमान के बीच का अंतर विशेष रूप से बड़ा होता है। इस प्रकार, पूर्वी साइबेरिया के कुछ क्षेत्रों में, वार्षिक वायु तापमान सीमा 65°C तक पहुँच जाती है। इन अक्षांशों में आर्द्रीकरण की स्थितियाँ बहुत विविध हैं, मुख्य रूप से सामान्य वायुमंडलीय परिसंचरण के शासन पर निर्भर करती हैं और साल-दर-साल काफी भिन्न होती हैं।

ध्रुवीय अक्षांशों में, पूरे वर्ष तापमान कम रहता है, भले ही ध्यान देने योग्य मौसमी बदलाव हो। यह महासागरों और भूमि और पर्माफ्रॉस्ट पर बर्फ के आवरण के व्यापक वितरण में योगदान देता है, जो रूस में इसके 65% से अधिक क्षेत्र पर कब्जा कर लेता है, मुख्य रूप से साइबेरिया में।

पिछले दशकों में, वैश्विक जलवायु में परिवर्तन तेजी से ध्यान देने योग्य हो गए हैं। निम्न अक्षांशों की तुलना में उच्च अक्षांशों पर तापमान अधिक बढ़ता है; गर्मियों की तुलना में सर्दियों में अधिक; दिन की तुलना में रात में अधिक. 20वीं सदी में, रूस में पृथ्वी की सतह पर औसत वार्षिक वायु तापमान में 1.5-2 डिग्री सेल्सियस की वृद्धि हुई, और साइबेरिया के कुछ क्षेत्रों में कई डिग्री की वृद्धि देखी गई। यह सूक्ष्म गैसों की सांद्रता में वृद्धि के कारण ग्रीनहाउस प्रभाव में वृद्धि से जुड़ा है।

मौसम वायुमंडलीय परिसंचरण की स्थितियों और क्षेत्र की भौगोलिक स्थिति से निर्धारित होता है, यह उष्णकटिबंधीय में सबसे स्थिर और मध्य और उच्च अक्षांशों में सबसे अधिक परिवर्तनशील होता है। वायुमंडलीय मोर्चों, चक्रवातों और वर्षा ले जाने वाले प्रतिचक्रवातों और बढ़ी हुई हवा के पारित होने के कारण बदलती वायुराशियों के क्षेत्रों में मौसम सबसे अधिक बदलता है। मौसम की भविष्यवाणी के लिए डेटा ज़मीन-आधारित मौसम स्टेशनों, जहाजों और विमानों और मौसम संबंधी उपग्रहों से एकत्र किया जाता है। मौसम विज्ञान भी देखें।

वायुमंडल में ऑप्टिकल, ध्वनिक और विद्युत घटनाएं. जब विद्युत चुम्बकीय विकिरण वायुमंडल में फैलता है, तो हवा और विभिन्न कणों (एरोसोल, बर्फ के क्रिस्टल, पानी की बूंदें) द्वारा प्रकाश के अपवर्तन, अवशोषण और बिखरने के परिणामस्वरूप, विभिन्न ऑप्टिकल घटनाएं उत्पन्न होती हैं: इंद्रधनुष, मुकुट, प्रभामंडल, मृगतृष्णा, आदि। प्रकाश का प्रकीर्णन स्वर्ग की तिजोरी की स्पष्ट ऊंचाई और आकाश के नीले रंग को निर्धारित करता है। वस्तुओं की दृश्यता सीमा वायुमंडल में प्रकाश प्रसार की स्थितियों से निर्धारित होती है (वायुमंडलीय दृश्यता देखें)। विभिन्न तरंग दैर्ध्य पर वायुमंडल की पारदर्शिता संचार सीमा और उपकरणों के साथ वस्तुओं का पता लगाने की क्षमता निर्धारित करती है, जिसमें पृथ्वी की सतह से खगोलीय अवलोकन की संभावना भी शामिल है। समताप मंडल और मेसोस्फीयर की ऑप्टिकल असमानताओं के अध्ययन के लिए, गोधूलि घटना एक महत्वपूर्ण भूमिका निभाती है। उदाहरण के लिए, अंतरिक्ष यान से गोधूलि की तस्वीर लेने से एयरोसोल परतों का पता लगाना संभव हो जाता है। वायुमंडल में विद्युत चुम्बकीय विकिरण के प्रसार की विशेषताएं इसके मापदंडों की रिमोट सेंसिंग के तरीकों की सटीकता निर्धारित करती हैं। इन सभी प्रश्नों के साथ-साथ कई अन्य प्रश्नों का अध्ययन वायुमंडलीय प्रकाशिकी द्वारा किया जाता है। रेडियो तरंगों का अपवर्तन और प्रकीर्णन रेडियो रिसेप्शन की संभावनाओं को निर्धारित करता है (रेडियो तरंगों का प्रसार देखें)।

वायुमंडल में ध्वनि का प्रसार तापमान और हवा की गति के स्थानिक वितरण पर निर्भर करता है (वायुमंडलीय ध्वनिकी देखें)। यह दूरस्थ तरीकों से वायुमंडलीय संवेदन के लिए रुचिकर है। ऊपरी वायुमंडल में रॉकेटों द्वारा प्रक्षेपित आवेशों के विस्फोटों ने समताप मंडल और मेसोस्फीयर में पवन प्रणालियों और तापमान भिन्नता के बारे में समृद्ध जानकारी प्रदान की। एक स्थिर स्तरीकृत वातावरण में, जब तापमान एडियाबेटिक ग्रेडिएंट (9.8 K/किमी) की तुलना में धीमी ऊंचाई के साथ घटता है, तो तथाकथित आंतरिक तरंगें उत्पन्न होती हैं। ये तरंगें समताप मंडल में ऊपर की ओर और यहां तक ​​कि मध्यमंडल में भी फैल सकती हैं, जहां वे क्षीण हो जाती हैं, जिससे हवाओं और अशांति में वृद्धि होती है।

पृथ्वी का ऋणात्मक आवेश और परिणामी विद्युत क्षेत्र, वायुमंडल, विद्युत आवेशित आयनमंडल और मैग्नेटोस्फीयर के साथ मिलकर एक वैश्विक विद्युत परिपथ बनाते हैं। बादलों का बनना और आंधी बिजली इसमें अहम भूमिका निभाती है। बिजली गिरने के खतरे के कारण इमारतों, संरचनाओं, बिजली लाइनों और संचार के लिए बिजली संरक्षण विधियों के विकास की आवश्यकता हो गई है। यह घटना विमानन के लिए एक विशेष खतरा पैदा करती है। बिजली के निर्वहन से वायुमंडलीय रेडियो हस्तक्षेप होता है, जिसे वायुमंडल कहा जाता है (व्हिस्लिंग वायुमंडल देखें)। विद्युत क्षेत्र की ताकत में तेज वृद्धि के दौरान, चमकदार डिस्चार्ज देखे जाते हैं जो पृथ्वी की सतह के ऊपर उभरी हुई वस्तुओं की युक्तियों और तेज कोनों, पहाड़ों में अलग-अलग चोटियों आदि पर दिखाई देते हैं (एल्मा लाइट्स)। विशिष्ट परिस्थितियों के आधार पर वायुमंडल में हमेशा प्रकाश और भारी आयनों की बहुत भिन्न मात्रा होती है, जो वायुमंडल की विद्युत चालकता को निर्धारित करते हैं। पृथ्वी की सतह के पास हवा के मुख्य आयनकारक पृथ्वी की पपड़ी और वायुमंडल में निहित रेडियोधर्मी पदार्थों के विकिरण के साथ-साथ ब्रह्मांडीय किरणें भी हैं। वायुमंडलीय बिजली भी देखें।

वातावरण पर मानव का प्रभाव।पिछली शताब्दियों में मानव आर्थिक गतिविधियों के कारण वातावरण में ग्रीनहाउस गैसों की सांद्रता में वृद्धि हुई है। कार्बन डाइऑक्साइड का प्रतिशत दो सौ साल पहले 2.8-10 2 से बढ़कर 2005 में 3.8-10 2 हो गया, मीथेन सामग्री - लगभग 300-400 साल पहले 0.7-10 1 से बढ़कर 21वीं सदी की शुरुआत में 1.8-10 -4 हो गई। शतक; पिछली सदी में ग्रीनहाउस प्रभाव में लगभग 20% वृद्धि फ़्रीऑन से हुई, जो 20वीं सदी के मध्य तक वायुमंडल में व्यावहारिक रूप से अनुपस्थित थे। इन पदार्थों को समतापमंडलीय ओजोन क्षरणकर्ता के रूप में मान्यता प्राप्त है, और उनका उत्पादन 1987 के मॉन्ट्रियल प्रोटोकॉल द्वारा निषिद्ध है। वायुमंडल में कार्बन डाइऑक्साइड की सांद्रता में वृद्धि कोयला, तेल, गैस और अन्य प्रकार के कार्बन ईंधन की लगातार बढ़ती मात्रा के जलने के साथ-साथ जंगलों की कटाई के कारण होती है, जिसके परिणामस्वरूप अवशोषण में कमी आती है। प्रकाश संश्लेषण के माध्यम से कार्बन डाइऑक्साइड का. मीथेन की सांद्रता तेल और गैस उत्पादन में वृद्धि (इसके नुकसान के कारण) के साथ-साथ चावल की फसलों के विस्तार और मवेशियों की संख्या में वृद्धि के साथ बढ़ती है। यह सब जलवायु के गर्म होने में योगदान देता है।

मौसम को बदलने के लिए वायुमंडलीय प्रक्रियाओं को सक्रिय रूप से प्रभावित करने के तरीके विकसित किए गए हैं। इनका उपयोग गरज वाले बादलों में विशेष अभिकर्मकों को फैलाकर कृषि पौधों को ओलों से बचाने के लिए किया जाता है। हवाई अड्डों पर कोहरे को फैलाने, पौधों को ठंढ से बचाने, वांछित क्षेत्रों में वर्षा बढ़ाने के लिए बादलों को प्रभावित करने या सार्वजनिक कार्यक्रमों के दौरान बादलों को तितर-बितर करने के तरीके भी मौजूद हैं।

वातावरण का अध्ययन. वायुमंडल में भौतिक प्रक्रियाओं के बारे में जानकारी मुख्य रूप से मौसम संबंधी टिप्पणियों से प्राप्त होती है, जो सभी महाद्वीपों और कई द्वीपों पर स्थित स्थायी रूप से संचालित मौसम विज्ञान स्टेशनों और चौकियों के एक वैश्विक नेटवर्क द्वारा की जाती है। दैनिक अवलोकन हवा के तापमान और आर्द्रता, वायुमंडलीय दबाव और वर्षा, बादल, हवा आदि के बारे में जानकारी प्रदान करते हैं। सौर विकिरण और इसके परिवर्तनों का अवलोकन एक्टिनोमेट्रिक स्टेशनों पर किया जाता है। वायुमंडल के अध्ययन के लिए एयरोलॉजिकल स्टेशनों के नेटवर्क का बहुत महत्व है, जिन पर रेडियोसॉन्डेस का उपयोग करके 30-35 किमी की ऊंचाई तक मौसम संबंधी माप किए जाते हैं। कई स्टेशनों पर, वायुमंडलीय ओजोन, वायुमंडल में विद्युत घटना और हवा की रासायनिक संरचना का अवलोकन किया जाता है।

ग्राउंड स्टेशनों के डेटा को महासागरों पर टिप्पणियों द्वारा पूरक किया जाता है, जहां "मौसम जहाज" संचालित होते हैं, जो लगातार विश्व महासागर के कुछ क्षेत्रों में स्थित होते हैं, साथ ही अनुसंधान और अन्य जहाजों से प्राप्त मौसम संबंधी जानकारी भी होती है।

हाल के दशकों में, मौसम संबंधी उपग्रहों का उपयोग करके वायुमंडल के बारे में बढ़ती मात्रा में जानकारी प्राप्त की गई है, जो बादलों की तस्वीरें खींचने और सूर्य से पराबैंगनी, अवरक्त और माइक्रोवेव विकिरण के प्रवाह को मापने के लिए उपकरण ले जाते हैं। उपग्रह तापमान, बादल और इसकी जल आपूर्ति, वायुमंडल के विकिरण संतुलन के तत्वों, समुद्र की सतह के तापमान आदि के ऊर्ध्वाधर प्रोफाइल के बारे में जानकारी प्राप्त करना संभव बनाते हैं। नेविगेशन उपग्रहों की एक प्रणाली से रेडियो संकेतों के अपवर्तन के माप का उपयोग करके, यह घनत्व, दबाव और तापमान के साथ-साथ वातावरण में नमी की मात्रा के ऊर्ध्वाधर प्रोफाइल को निर्धारित करना संभव है। उपग्रहों की मदद से, पृथ्वी के सौर स्थिरांक और ग्रहीय अल्बेडो के मूल्य को स्पष्ट करना, पृथ्वी-वायुमंडल प्रणाली के विकिरण संतुलन के मानचित्र बनाना, छोटे वायुमंडलीय प्रदूषकों की सामग्री और परिवर्तनशीलता को मापना और समाधान करना संभव हो गया है। वायुमंडलीय भौतिकी और पर्यावरण निगरानी की कई अन्य समस्याएं।

लिट.: बुड्यको एम.आई. अतीत और भविष्य में जलवायु। एल., 1980; मतवेव एल. टी. सामान्य मौसम विज्ञान का पाठ्यक्रम। वायुमंडलीय भौतिकी. दूसरा संस्करण. एल., 1984; बुड्यको एम.आई., रोनोव ए.बी., यानशिन ए.एल. वातावरण का इतिहास। एल., 1985; ख्रगियन ए.ख. वायुमंडलीय भौतिकी। एम., 1986; वातावरण: निर्देशिका. एल., 1991; ख्रोमोव एस.पी., पेट्रोसिएंट्स एम.ए. मौसम विज्ञान और जलवायु विज्ञान। 5वां संस्करण. एम., 2001.

जी.एस. गोलित्सिन, एन.ए. जैतसेवा।

>पृथ्वी का वायुमंडल

विवरण पृथ्वी का वायुमंडलसभी उम्र के बच्चों के लिए: हवा किस चीज से बनी है, गैसों की उपस्थिति, तस्वीरों वाली परतें, सौर मंडल के तीसरे ग्रह की जलवायु और मौसम।

छोटों के लिएयह पहले से ही ज्ञात है कि पृथ्वी हमारे सिस्टम में एकमात्र ग्रह है जिसके पास व्यवहार्य वातावरण है। गैस कंबल न केवल हवा से समृद्ध है, बल्कि हमें अत्यधिक गर्मी और सौर विकिरण से भी बचाता है। महत्वपूर्ण बच्चों को समझाओसिस्टम को अविश्वसनीय रूप से अच्छी तरह से डिज़ाइन किया गया है, क्योंकि यह सतह को दिन के दौरान गर्म करने और रात में ठंडा होने की अनुमति देता है, जिससे स्वीकार्य संतुलन बना रहता है।

शुरू बच्चों के लिए स्पष्टीकरणयह इस तथ्य से संभव है कि पृथ्वी के वायुमंडल का ग्लोब 480 किमी तक फैला हुआ है, लेकिन इसका अधिकांश भाग सतह से 16 किमी दूर स्थित है। ऊँचाई जितनी अधिक होगी दबाव उतना ही कम होगा। यदि हम समुद्र तल को लें तो वहां दबाव 1 किलोग्राम प्रति वर्ग सेंटीमीटर है। लेकिन 3 किमी की ऊंचाई पर यह बदल जाएगा - 0.7 किलोग्राम प्रति वर्ग सेंटीमीटर। बेशक, ऐसी स्थितियों में सांस लेना अधिक कठिन होता है ( बच्चेयदि आप कभी पहाड़ों में पदयात्रा करने गए हों तो आप इसे महसूस कर सकते हैं)।

पृथ्वी की वायु की संरचना - बच्चों के लिए स्पष्टीकरण

गैसों में हैं:

  • नाइट्रोजन - 78%।
  • ऑक्सीजन - 21%।
  • आर्गन - 0.93%।
  • कार्बन डाइऑक्साइड - 0.038%।
  • इसमें थोड़ी मात्रा में जलवाष्प और अन्य गैस अशुद्धियाँ भी होती हैं।

पृथ्वी की वायुमंडलीय परतें - बच्चों के लिए स्पष्टीकरण

अभिभावकया शिक्षक स्कूल मेंहमें आपको याद दिलाना चाहिए कि पृथ्वी का वायुमंडल 5 स्तरों में विभाजित है: बाह्यमंडल, थर्मोस्फीयर, मेसोस्फीयर, समतापमंडल और क्षोभमंडल। प्रत्येक परत के साथ, वायुमंडल अधिक से अधिक घुलता जाता है जब तक कि गैसें अंततः अंतरिक्ष में फैल नहीं जातीं।

क्षोभमंडल सतह के सबसे निकट है। 7-20 किमी की मोटाई के साथ, यह पृथ्वी के वायुमंडल का आधा हिस्सा बनाता है। पृथ्वी के जितना करीब, हवा उतनी ही अधिक गर्म होती है। लगभग सभी जलवाष्प और धूल यहीं एकत्र होते हैं। बच्चों को आश्चर्य नहीं होगा कि बादल इसी स्तर पर तैरते हैं।

समताप मंडल क्षोभमंडल से शुरू होता है और सतह से 50 किमी ऊपर उठता है। यहां ओजोन प्रचुर मात्रा में है, जो वातावरण को गर्म करती है और हानिकारक सौर विकिरण से बचाती है। हवा समुद्र तल से 1000 गुना पतली और असामान्य रूप से शुष्क है। इसीलिए यहां हवाई जहाज बहुत अच्छे लगते हैं।

मध्यमंडल: सतह से 50 किमी से 85 किमी ऊपर। शिखर को मेसोपॉज़ कहा जाता है और यह पृथ्वी के वायुमंडल में सबसे ठंडा स्थान (-90°C) है। इसका पता लगाना बहुत कठिन है क्योंकि जेट विमान वहां नहीं पहुंच सकते हैं, और उपग्रहों की कक्षीय ऊंचाई बहुत अधिक है। वैज्ञानिक तो यही जानते हैं कि यहीं उल्काएं जलती हैं।

थर्मोस्फीयर: 90 किमी और 500-1000 किमी के बीच। तापमान 1500°C तक पहुँच जाता है। इसे पृथ्वी के वायुमंडल का हिस्सा माना जाता है, लेकिन यह महत्वपूर्ण है बच्चों को समझाओयहाँ वायु का घनत्व इतना कम है कि इसका अधिकांश भाग पहले से ही बाहरी अंतरिक्ष के रूप में माना जाता है। दरअसल, यहीं पर अंतरिक्ष शटल और अंतर्राष्ट्रीय अंतरिक्ष स्टेशन स्थित हैं। इसके अलावा यहां अरोरा का निर्माण होता है। आवेशित ब्रह्मांडीय कण थर्मोस्फीयर के परमाणुओं और अणुओं के संपर्क में आते हैं, जिससे वे उच्च ऊर्जा स्तर पर स्थानांतरित हो जाते हैं। इसकी बदौलत हम प्रकाश के इन फोटॉनों को अरोरा के रूप में देखते हैं।

बहिर्मंडल सबसे ऊंची परत है। वायुमंडल को अंतरिक्ष के साथ मिलाने की एक अविश्वसनीय रूप से पतली रेखा। व्यापक रूप से बिखरे हुए हाइड्रोजन और हीलियम कणों से मिलकर बनता है।

पृथ्वी की जलवायु और मौसम - बच्चों के लिए स्पष्टीकरण

छोटों के लिएकरने की जरूरत है व्याख्या करनापृथ्वी अपनी क्षेत्रीय जलवायु के कारण कई जीवित प्रजातियों का समर्थन करने में सक्षम है जो ध्रुवों पर अत्यधिक ठंड और भूमध्य रेखा पर उष्णकटिबंधीय गर्मी द्वारा दर्शायी जाती है। बच्चेपता होना चाहिए कि क्षेत्रीय जलवायु वह मौसम है जो किसी विशेष क्षेत्र में 30 वर्षों तक अपरिवर्तित रहता है। बेशक, कभी-कभी यह कुछ घंटों के लिए बदल सकता है, लेकिन अधिकांश समय यह स्थिर रहता है।

इसके अलावा, वैश्विक पृथ्वी की जलवायु प्रतिष्ठित है - क्षेत्रीय का औसत। यह पूरे मानव इतिहास में बदल गया है। आज तेजी से गर्मी पड़ रही है. वैज्ञानिक खतरे की घंटी बजा रहे हैं क्योंकि मानव गतिविधि के कारण होने वाली ग्रीनहाउस गैसें वातावरण में गर्मी को फंसा रही हैं, जिससे हमारे ग्रह के शुक्र में बदलने का खतरा है।

वायुमंडल हमारे ग्रह का गैसीय आवरण है, जो पृथ्वी के साथ-साथ घूमता है। वायुमंडल में मौजूद गैस को वायु कहा जाता है। वायुमंडल जलमंडल के संपर्क में है और आंशिक रूप से स्थलमंडल को कवर करता है। लेकिन ऊपरी सीमा निर्धारित करना कठिन है। यह परंपरागत रूप से स्वीकार किया जाता है कि वायुमंडल लगभग तीन हजार किलोमीटर तक ऊपर की ओर फैला हुआ है। वहां यह वायुहीन अंतरिक्ष में आसानी से प्रवाहित होता है।

पृथ्वी के वायुमंडल की रासायनिक संरचना

वायुमंडल की रासायनिक संरचना का निर्माण लगभग चार अरब वर्ष पहले शुरू हुआ था। प्रारंभ में, वायुमंडल में केवल हल्की गैसें - हीलियम और हाइड्रोजन शामिल थीं। वैज्ञानिकों के अनुसार, पृथ्वी के चारों ओर गैस के गोले के निर्माण के लिए प्रारंभिक शर्तें ज्वालामुखी विस्फोट थीं, जो लावा के साथ भारी मात्रा में गैसों का उत्सर्जन करती थीं। इसके बाद, जलीय स्थानों, जीवित जीवों और उनकी गतिविधियों के उत्पादों के साथ गैस विनिमय शुरू हुआ। हवा की संरचना धीरे-धीरे बदल गई और कई मिलियन वर्ष पहले अपने आधुनिक रूप में स्थिर हो गई।

वायुमंडल के मुख्य घटक नाइट्रोजन (लगभग 79%) और ऑक्सीजन (20%) हैं। शेष प्रतिशत (1%) निम्नलिखित गैसों से बना है: आर्गन, नियॉन, हीलियम, मीथेन, कार्बन डाइऑक्साइड, हाइड्रोजन, क्रिप्टन, क्सीनन, ओजोन, अमोनिया, सल्फर और नाइट्रोजन डाइऑक्साइड, नाइट्रस ऑक्साइड और कार्बन मोनोऑक्साइड, जो शामिल हैं इस एक प्रतिशत में.

इसके अलावा, हवा में जल वाष्प और कण पदार्थ (पराग, धूल, नमक क्रिस्टल, एरोसोल अशुद्धियाँ) होते हैं।

हाल ही में, वैज्ञानिकों ने कुछ वायु अवयवों में गुणात्मक नहीं, बल्कि मात्रात्मक परिवर्तन देखा है। और इसका कारण है मनुष्य और उसकी गतिविधियाँ। अकेले पिछले 100 वर्षों में, कार्बन डाइऑक्साइड का स्तर काफी बढ़ गया है! यह कई समस्याओं से भरा है, जिनमें से सबसे वैश्विक समस्या जलवायु परिवर्तन है।

मौसम एवं जलवायु का निर्माण

पृथ्वी पर जलवायु और मौसम को आकार देने में वायुमंडल महत्वपूर्ण भूमिका निभाता है। बहुत कुछ सूर्य के प्रकाश की मात्रा, अंतर्निहित सतह की प्रकृति और वायुमंडलीय परिसंचरण पर निर्भर करता है।

आइए कारकों को क्रम से देखें।

1. वायुमंडल सूर्य की किरणों की गर्मी को प्रसारित करता है और हानिकारक विकिरण को अवशोषित करता है। प्राचीन यूनानियों को पता था कि सूर्य की किरणें पृथ्वी के विभिन्न भागों पर अलग-अलग कोणों पर पड़ती हैं। प्राचीन ग्रीक से अनुवादित शब्द "जलवायु" का अर्थ "ढलान" है। अतः भूमध्य रेखा पर सूर्य की किरणें लगभग लंबवत पड़ती हैं, जिसके कारण यहाँ अत्यधिक गर्मी होती है। ध्रुवों के जितना करीब होगा, झुकाव का कोण उतना ही अधिक होगा। और तापमान गिर जाता है.

2. पृथ्वी के असमान तापन के कारण वायुमंडल में वायु धाराएँ बनती हैं। इन्हें उनके आकार के अनुसार वर्गीकृत किया गया है। सबसे छोटी (दसियों और सैकड़ों मीटर) स्थानीय हवाएँ हैं। इसके बाद मानसून और व्यापारिक हवाएँ, चक्रवात और प्रतिचक्रवात, और ग्रहीय ललाट क्षेत्र आते हैं।

ये सभी वायुराशियाँ निरंतर गतिशील रहती हैं। उनमें से कुछ काफी स्थिर हैं. उदाहरण के लिए, व्यापारिक हवाएँ जो उपोष्णकटिबंधीय से भूमध्य रेखा की ओर चलती हैं। दूसरों की गति काफी हद तक वायुमंडलीय दबाव पर निर्भर करती है।

3. वायुमंडलीय दबाव जलवायु निर्माण को प्रभावित करने वाला एक अन्य कारक है। यह पृथ्वी की सतह पर वायुदाब है। जैसा कि ज्ञात है, वायुराशि उच्च वायुमंडलीय दबाव वाले क्षेत्र से ऐसे क्षेत्र की ओर बढ़ती है जहां यह दबाव कम होता है।

कुल 7 जोन आवंटित किये गये हैं. भूमध्य रेखा एक निम्न दबाव क्षेत्र है। इसके अलावा, भूमध्य रेखा के दोनों ओर तीस अक्षांशों तक उच्च दबाव का क्षेत्र होता है। 30° से 60° तक - पुनः निम्न दबाव। तथा 60° से ध्रुवों तक उच्च दाब क्षेत्र है। इन क्षेत्रों के बीच वायुराशियाँ प्रसारित होती हैं। जो समुद्र से ज़मीन पर आते हैं वे बारिश और ख़राब मौसम लाते हैं, और जो महाद्वीपों से उड़ते हैं वे साफ़ और शुष्क मौसम लाते हैं। उन स्थानों पर जहां वायु धाराएं टकराती हैं, वायुमंडलीय अग्र क्षेत्र बनते हैं, जो वर्षा और खराब, हवादार मौसम की विशेषता रखते हैं।

वैज्ञानिकों ने साबित कर दिया है कि किसी व्यक्ति की भलाई भी वायुमंडलीय दबाव पर निर्भर करती है। अंतर्राष्ट्रीय मानकों के अनुसार, सामान्य वायुमंडलीय दबाव 760 मिमी एचजी है। 0°C के तापमान पर स्तंभ। इस सूचक की गणना भूमि के उन क्षेत्रों के लिए की जाती है जो समुद्र तल के लगभग समतल हैं। ऊंचाई के साथ दबाव कम होता जाता है। इसलिए, उदाहरण के लिए, सेंट पीटर्सबर्ग के लिए 760 मिमी एचजी। - यह आदर्श है. लेकिन मॉस्को के लिए, जो उच्चतर स्थित है, सामान्य दबाव 748 मिमी एचजी है।

दबाव न केवल लंबवत रूप से बदलता है, बल्कि क्षैतिज रूप से भी बदलता है। यह विशेष रूप से चक्रवातों के गुजरने के दौरान महसूस किया जाता है।

वायुमंडल की संरचना

माहौल एक लेयर केक की याद दिलाता है. और प्रत्येक परत की अपनी-अपनी विशेषताएँ होती हैं।

. क्षोभ मंडल- पृथ्वी के सबसे निकट की परत। इस परत की "मोटाई" भूमध्य रेखा से दूरी के साथ बदलती रहती है। भूमध्य रेखा के ऊपर, परत ऊपर की ओर 16-18 किमी, समशीतोष्ण क्षेत्रों में 10-12 किमी, ध्रुवों पर 8-10 किमी तक फैली हुई है।

यहीं पर कुल वायु द्रव्यमान का 80% और 90% जलवाष्प निहित है। यहां बादल बनते हैं, चक्रवात और प्रतिचक्रवात उठते हैं। हवा का तापमान क्षेत्र की ऊंचाई पर निर्भर करता है। औसतन, प्रत्येक 100 मीटर पर यह 0.65°C कम हो जाता है।

. ट्रोपोपॉज़- वायुमंडल की संक्रमण परत। इसकी ऊंचाई कई सौ मीटर से लेकर 1-2 किमी तक होती है। गर्मियों में हवा का तापमान सर्दियों की तुलना में अधिक होता है। उदाहरण के लिए, सर्दियों में ध्रुवों के ऊपर तापमान -65°C होता है। और वर्ष के किसी भी समय भूमध्य रेखा के ऊपर यह -70°C होता है।

. स्ट्रैटोस्फियर- यह एक परत है जिसकी ऊपरी सीमा 50-55 किलोमीटर की ऊंचाई पर स्थित है। यहां अशांति कम है, हवा में जलवाष्प की मात्रा नगण्य है। लेकिन ओजोन बहुत है. इसकी अधिकतम सघनता 20-25 किमी की ऊंचाई पर होती है। समताप मंडल में, हवा का तापमान बढ़ना शुरू हो जाता है और +0.8 डिग्री सेल्सियस तक पहुंच जाता है। यह इस तथ्य के कारण है कि ओजोन परत पराबैंगनी विकिरण के साथ संपर्क करती है।

. स्ट्रैटोपॉज़- समतापमंडल और इसके बाद आने वाले मध्यमंडल के बीच एक निचली मध्यवर्ती परत।

. मीसोस्फीयर- इस परत की ऊपरी सीमा 80-85 किलोमीटर है। मुक्त कणों से जुड़ी जटिल फोटोकैमिकल प्रक्रियाएं यहां होती हैं। वे ही हमारे ग्रह को वह हल्की नीली चमक प्रदान करते हैं, जो अंतरिक्ष से दिखाई देती है।

अधिकांश धूमकेतु और उल्कापिंड मध्यमंडल में जल जाते हैं।

. मेसोपॉज़- अगली मध्यवर्ती परत, जिसमें हवा का तापमान कम से कम -90° हो।

. थर्मोस्फीयर- निचली सीमा 80-90 किमी की ऊंचाई पर शुरू होती है, और परत की ऊपरी सीमा लगभग 800 किमी पर चलती है। हवा का तापमान बढ़ रहा है. यह +500°C से +1000°C तक भिन्न हो सकता है। दिन के दौरान, तापमान में उतार-चढ़ाव सैकड़ों डिग्री तक होता है! लेकिन यहाँ की हवा इतनी दुर्लभ है कि "तापमान" शब्द को हमारी कल्पना के अनुसार समझना यहाँ उचित नहीं है।

. योण क्षेत्र- मेसोस्फीयर, मेसोपॉज़ और थर्मोस्फीयर को जोड़ती है। यहां की हवा में मुख्य रूप से ऑक्सीजन और नाइट्रोजन अणु, साथ ही अर्ध-तटस्थ प्लाज्मा शामिल हैं। आयनमंडल में प्रवेश करने वाली सूर्य की किरणें हवा के अणुओं को दृढ़ता से आयनित करती हैं। निचली परत में (90 किमी तक) आयनीकरण की मात्रा कम होती है। जितना अधिक होगा, आयनीकरण उतना ही अधिक होगा। तो, 100-110 किमी की ऊंचाई पर, इलेक्ट्रॉन केंद्रित होते हैं। यह छोटी और मध्यम रेडियो तरंगों को प्रतिबिंबित करने में मदद करता है।

आयनमंडल की सबसे महत्वपूर्ण परत ऊपरी परत है, जो 150-400 किमी की ऊंचाई पर स्थित है। इसकी ख़ासियत यह है कि यह रेडियो तरंगों को प्रतिबिंबित करता है, और इससे काफी दूरी तक रेडियो संकेतों के प्रसारण की सुविधा मिलती है।

यह आयनमंडल में है कि अरोरा जैसी घटना घटित होती है।

. बहिर्मंडल- इसमें ऑक्सीजन, हीलियम और हाइड्रोजन परमाणु होते हैं। इस परत में गैस बहुत दुर्लभ है और हाइड्रोजन परमाणु अक्सर बाहरी अंतरिक्ष में भाग जाते हैं। इसलिए, इस परत को "फैलाव क्षेत्र" कहा जाता है।

हमारे वायुमंडल में भार है, यह सुझाव देने वाले पहले वैज्ञानिक इतालवी ई. टोरिसेली थे। उदाहरण के लिए, ओस्टाप बेंडर ने अपने उपन्यास "द गोल्डन काफ़" में दुख व्यक्त किया है कि प्रत्येक व्यक्ति 14 किलोग्राम वजन वाले हवा के स्तंभ से दबा हुआ है! लेकिन महान योजनाकार थोड़ा गलत था। एक वयस्क को 13-15 टन का दबाव अनुभव होता है! लेकिन हमें यह भारीपन महसूस नहीं होता, क्योंकि वायुमंडलीय दबाव व्यक्ति के आंतरिक दबाव से संतुलित होता है। हमारे वायुमंडल का भार 5,300,000,000,000,000 टन है। यह आंकड़ा बहुत बड़ा है, हालांकि यह हमारे ग्रह के वजन का केवल दस लाखवां हिस्सा है।